NVIDIA GPU (Proprietary drivers)
Enabling NVIDIA GPU support on Talos is bound by NVIDIA EULA.
The steps to enable NVIDIA support in Talos in v1.4.8 and later differ from previous versions:
- For versions prior to v1.4.8 the steps require that the user build and maintain their own Talos installer image. After the Prerequisites jump to Building the installer image (Talos prior to v1.4.8) and after Upgrading Talos and enabling the NVIDIA modules and the system extension (Talos prior to v1.4.8) continue from Verifying the NVIDIA modules and the system extension.
- for v1.4.8 and later versions building a custom Talos installer image is not required anymore and the new, prefered way to enable NVIDIA support is via an extension.
Prerequisites
This guide assumes the user has access to a container registry with push
permissions, docker installed on the build machine and the Talos host has pull
access to the container registry.
Set the local registry, username and version environment variables:
export USERNAME=<username>
export REGISTRY=<registry>
export TAG=v1.4.8-nvidia
For eg:
export USERNAME=talos-user
export REGISTRY=ghcr.io
The examples below will use the sample variables set above. Modify accordingly for your environment.
Building the NVIDIA extensions
Instead of building the extensions yourself, you can use the extensions published by SideroLabs in the
pkgs
repo here and here
Start by cloning the release-1.5
branch extensions repository.
git clone --depth=1 --branch=release-1.5 https://github.com/siderolabs/extensions.git
Lookup the version of pkgs used for the particular Talos version here
Replace v1.4.8 with the Talos version you are using.
Now run the following command to build and push custom NVIDIA extension.
make nonfree-kmod-nvidia PKGS=<pkgs-version-looked-up-above> PLATFORM=linux/amd64 PUSH=true
Replace the platform with
linux/arm64
if building for ARM64 Make sure to usetalosctl
version v1.4.8 or later
Upgrading Talos and enabling the NVIDIA modules and the system extension
First create a patch yaml gpu-worker-patch.yaml
to update the machine config similar to below:
- op: add
path: /machine/install/extensions
value:
- image: ghcr.io/siderolabs/nonfree-kmod-nvidia:530.41.03-v1.4.8
- image: ghcr.io/siderolabs/nvidia-container-toolkit:530.41.03-v1.12.1
- op: add
path: /machine/kernel
value:
modules:
- name: nvidia
- name: nvidia_uvm
- name: nvidia_drm
- name: nvidia_modeset
- op: add
path: /machine/sysctls
value:
net.core.bpf_jit_harden: 1
Now apply the patch to all Talos nodes in the cluster having NVIDIA GPU’s installed:
talosctl patch mc --patch @gpu-worker-patch.yaml
Now we can proceed to upgrading Talos to the same version to enable the system extension:
talosctl upgrade --image=ghcr.io/siderolabs/installer:v1.4.8
Verifying the NVIDIA modules and the system extension
Once the node reboots, the NVIDIA modules should be loaded and the system extension should be installed.
This can be confirmed by running:
talosctl read /proc/modules
which should produce an output similar to below:
nvidia_uvm 1146880 - - Live 0xffffffffc2733000 (PO)
nvidia_drm 69632 - - Live 0xffffffffc2721000 (PO)
nvidia_modeset 1142784 - - Live 0xffffffffc25ea000 (PO)
nvidia 39047168 - - Live 0xffffffffc00ac000 (PO)
talosctl get extensions
which should produce an output similar to below:
NODE NAMESPACE TYPE ID VERSION NAME VERSION
172.31.41.27 runtime ExtensionStatus 000.ghcr.io-frezbo-nvidia-container-toolkit-510.60.02-v1.9.0 1 nvidia-container-toolkit 510.60.02-v1.9.0
talosctl read /proc/driver/nvidia/version
which should produce an output similar to below:
NVRM version: NVIDIA UNIX x86_64 Kernel Module 510.60.02 Wed Mar 16 11:24:05 UTC 2022
GCC version: gcc version 11.2.0 (GCC)
Deploying NVIDIA device plugin
First we need to create the RuntimeClass
Apply the following manifest to create a runtime class that uses the extension:
---
apiVersion: node.k8s.io/v1
kind: RuntimeClass
metadata:
name: nvidia
handler: nvidia
Install the NVIDIA device plugin:
helm repo add nvdp https://nvidia.github.io/k8s-device-plugin
helm repo update
helm install nvidia-device-plugin nvdp/nvidia-device-plugin --version=0.13.0 --set=runtimeClassName=nvidia
(Optional) Setting the default runtime class as nvidia
Do note that this will set the default runtime class to
nvidia
for all pods scheduled on the node.
Create a patch yaml nvidia-default-runtimeclass.yaml
to update the machine config similar to below:
- op: add
path: /machine/files
value:
- content: |
[plugins]
[plugins."io.containerd.grpc.v1.cri"]
[plugins."io.containerd.grpc.v1.cri".containerd]
default_runtime_name = "nvidia"
path: /etc/cri/conf.d/20-customization.part
op: create
Now apply the patch to all Talos nodes in the cluster having NVIDIA GPU’s installed:
talosctl patch mc --patch @nvidia-default-runtimeclass.yaml
Testing the runtime class
Note the
spec.runtimeClassName
being explicitly set tonvidia
in the pod spec.
Run the following command to test the runtime class:
kubectl run \
nvidia-test \
--restart=Never \
-ti --rm \
--image nvcr.io/nvidia/cuda:12.1.0-base-ubuntu22.04 \
--overrides '{"spec": {"runtimeClassName": "nvidia"}}' \
nvidia-smi
Building the installer image (Talos prior to v1.4.8)
Start by cloning the pkgs repository.
Now run the following command to build and push custom Talos kernel image and the NVIDIA image with the NVIDIA kernel modules signed by the kernel built along with it.
make kernel nonfree-kmod-nvidia PLATFORM=linux/amd64 PUSH=true
Replace the platform with
linux/arm64
if building for ARM64
Now we need to create a custom Talos installer image.
Start by creating a Dockerfile
with the following content:
FROM scratch as customization
COPY --from=ghcr.io/talos-user/nonfree-kmod-nvidia:v1.4.8-nvidia /lib/modules /lib/modules
FROM ghcr.io/siderolabs/installer:v1.4.8
COPY --from=ghcr.io/talos-user/kernel:v1.4.8-nvidia /boot/vmlinuz /usr/install/${TARGETARCH}/vmlinuz
Now build the image and push it to the registry.
DOCKER_BUILDKIT=0 docker build --squash --build-arg RM="/lib/modules" -t ghcr.io/talos-user/installer:v1.4.8-nvidia .
docker push ghcr.io/talos-user/installer:v1.4.8-nvidia
Note: buildkit has a bug #816, to disable it use DOCKER_BUILDKIT=0 Replace the platform with
linux/arm64
if building for ARM64
Upgrading Talos and enabling the NVIDIA modules and the system extension (Talos prior to v1.4.8)
Make sure to use
talosctl
version v1.4.8 or later
First create a patch yaml gpu-worker-patch.yaml
to update the machine config similar to below:
- op: add
path: /machine/install/extensions
value:
- image: ghcr.io/siderolabs/nvidia-container-toolkit:530.41.03-v1.12.1
- op: add
path: /machine/kernel
value:
modules:
- name: nvidia
- name: nvidia_uvm
- name: nvidia_drm
- name: nvidia_modeset
- op: add
path: /machine/sysctls
value:
net.core.bpf_jit_harden: 1
Now apply the patch to all Talos nodes in the cluster having NVIDIA GPU’s installed:
talosctl patch mc --patch @gpu-worker-patch.yaml
Now we can proceed to upgrading Talos with the installer built previously:
talosctl upgrade --image=ghcr.io/talos-user/installer:v1.4.8-nvidia