This is the multi-page printable view of this section. Click here to print.
Bare Metal Platforms
- 1: Digital Rebar
- 2: Equinix Metal
- 3: ISO
- 4: Matchbox
- 5: PXE
- 6: Sidero Metal
1 - Digital Rebar
Prerequisites
- 3 nodes (please see hardware requirements)
- Loadbalancer
- Digital Rebar Server
- Talosctl access (see talosctl setup)
Creating a Cluster
In this guide we will create an Kubernetes cluster with 1 worker node, and 2 controlplane nodes. We assume an existing digital rebar deployment, and some familiarity with iPXE.
We leave it up to the user to decide if they would like to use static networking, or DHCP. The setup and configuration of DHCP will not be covered.
Create the Machine Configuration Files
Generating Base Configurations
Using the DNS name of the load balancer, generate the base configuration files for the Talos machines:
$ talosctl gen config talos-k8s-metal-tutorial https://<load balancer IP or DNS>:<port>
created controlplane.yaml
created worker.yaml
created talosconfig
The loadbalancer is used to distribute the load across multiple controlplane nodes. This isn’t covered in detail, because we assume some loadbalancing knowledge before hand. If you think this should be added to the docs, please create a issue.
At this point, you can modify the generated configs to your liking.
Optionally, you can specify --config-patch
with RFC6902 jsonpatch which will be applied during the config generation.
Validate the Configuration Files
$ talosctl validate --config controlplane.yaml --mode metal
controlplane.yaml is valid for metal mode
$ talosctl validate --config worker.yaml --mode metal
worker.yaml is valid for metal mode
Publishing the Machine Configuration Files
Digital Rebar has a built-in fileserver, which means we can use this feature to expose the talos configuration files.
We will place controlplane.yaml
, and worker.yaml
into Digital Rebar file server by using the drpcli
tools.
Copy the generated files from the step above into your Digital Rebar installation.
drpcli file upload <file>.yaml as <file>.yaml
Replacing <file>
with controlplane or worker.
Download the boot files
Download a recent version of boot.tar.gz
from github.
Upload to DRB:
$ drpcli isos upload boot.tar.gz as talos.tar.gz
{
"Path": "talos.tar.gz",
"Size": 96470072
}
We have some Digital Rebar example files in the Git repo you can use to provision Digital Rebar with drpcli.
To apply these configs you need to create them, and then apply them as follow:
$ drpcli bootenvs create talos
{
"Available": true,
"BootParams": "",
"Bundle": "",
"Description": "",
"Documentation": "",
"Endpoint": "",
"Errors": [],
"Initrds": [],
"Kernel": "",
"Meta": {},
"Name": "talos",
"OS": {
"Codename": "",
"Family": "",
"IsoFile": "",
"IsoSha256": "",
"IsoUrl": "",
"Name": "",
"SupportedArchitectures": {},
"Version": ""
},
"OnlyUnknown": false,
"OptionalParams": [],
"ReadOnly": false,
"RequiredParams": [],
"Templates": [],
"Validated": true
}
drpcli bootenvs update talos - < bootenv.yaml
You need to do this for all files in the example directory. If you don’t have access to the
drpcli
tools you can also use the webinterface.
It’s important to have a corresponding SHA256 hash matching the boot.tar.gz
Bootenv BootParams
We’re using some of Digital Rebar built in templating to make sure the machine gets the correct role assigned.
talos.platform=metal talos.config={{ .ProvisionerURL }}/files/{{.Param \"talos/role\"}}.yaml"
This is why we also include a params.yaml
in the example directory to make sure the role is set to one of the following:
- controlplane
- worker
The {{.Param \"talos/role\"}}
then gets populated with one of the above roles.
Boot the Machines
In the UI of Digital Rebar you need to select the machines you want to provision. Once selected, you need to assign to following:
- Profile
- Workflow
This will provision the Stage and Bootenv with the talos values. Once this is done, you can boot the machine.
Bootstrap Etcd
To configure talosctl
we will need the first control plane node’s IP:
Set the endpoints
and nodes
:
talosctl --talosconfig talosconfig config endpoint <control plane 1 IP>
talosctl --talosconfig talosconfig config node <control plane 1 IP>
Bootstrap etcd
:
talosctl --talosconfig talosconfig bootstrap
Retrieve the kubeconfig
At this point we can retrieve the admin kubeconfig
by running:
talosctl --talosconfig talosconfig kubeconfig .
2 - Equinix Metal
You can create a Talos Linux cluster on Equinix Metal in a variety of ways, such as through the EM web UI, the metal
command line too, or through PXE booting.
Talos Linux is a supported OS install option on Equinix Metal, so it’s an easy process.
Regardless of the method, the process is:
- Create a DNS entry for your Kubernetes endpoint.
- Generate the configurations using
talosctl
. - Provision your machines on Equinix Metal.
- Push the configurations to your servers (if not done as part of the machine provisioning).
- configure your Kubernetes endpoint to point to the newly created control plane nodes
- bootstrap the cluster
Define the Kubernetes Endpoint
There are a variety of ways to create an HA endpoint for the Kubernetes cluster. Some of the ways are:
- DNS
- Load Balancer
- BGP
Whatever way is chosen, it should result in an IP address/DNS name that routes traffic to all the control plane nodes. We do not know the control plane node IP addresses at this stage, but we should define the endpoint DNS entry so that we can use it in creating the cluster configuration. After the nodes are provisioned, we can use their addresses to create the endpoint A records, or bind them to the load balancer, etc.
Create the Machine Configuration Files
Generating Configurations
Using the DNS name of the loadbalancer defined above, generate the base configuration files for the Talos machines:
$ talosctl gen config talos-k8s-em-tutorial https://<load balancer IP or DNS>:<port>
created controlplane.yaml
created worker.yaml
created talosconfig
The
port
used above should be 6443, unless your load balancer maps a different port to port 6443 on the control plane nodes.
Validate the Configuration Files
talosctl validate --config controlplane.yaml --mode metal
talosctl validate --config worker.yaml --mode metal
Note: Validation of the install disk could potentially fail as validation is performed on your local machine and the specified disk may not exist.
Passing in the configuration as User Data
You can use the metadata service provide by Equinix Metal to pass in the machines configuration. It is required to add a shebang to the top of the configuration file.
The convention we use is #!talos
.
Provision the machines in Equinix Metal
Using the Equinix Metal UI
Simply select the location and type of machines in the Equinix Metal web interface.
Select Talos as the Operating System, then select the number of servers to create, and name them (in lowercase only.)
Under optional settings, you can optionally paste in the contents of controlplane.yaml
that was generated, above (ensuring you add a first line of #!talos
).
You can repeat this process to create machines of different types for control plane and worker nodes (although you would pass in worker.yaml
for the worker nodes, as user data).
If you did not pass in the machine configuration as User Data, you need to provide it to each machine, with the following command:
talosctl apply-config --insecure --nodes <Node IP> --file ./controlplane.yaml
Creating a Cluster via the Equinix Metal CLI
This guide assumes the user has a working API token,and the Equinix Metal CLI installed.
Because Talos Linux is a supported operating system, Talos Linux machines can be provisioned directly via the CLI, using the -O talos_v1
parameter (for Operating System).
Note: Ensure you have prepended
#!talos
to thecontrolplane.yaml
file.
metal device create \
--project-id $PROJECT_ID \
--facility $FACILITY \
--operating-system "talos_v1" \
--plan $PLAN\
--hostname $HOSTNAME\
--userdata-file controlplane.yaml
e.g. metal device create -p <projectID> -f da11 -O talos_v1 -P c3.small.x86 -H steve.test.11 --userdata-file ./controlplane.yaml
Repeat this to create each control plane node desired: there should usually be 3 for a HA cluster.
Network Booting via iPXE
You may install Talos over the network using TFTP and iPXE. You would first need a working TFTP and iPXE server.
In general this requires a Talos kernel vmlinuz and initramfs. These assets can be downloaded from a given release.
PXE Boot Kernel Parameters
The following is a list of kernel parameters required by Talos:
talos.platform
: set this toequinixMetal
init_on_alloc=1
: required by KSPPslab_nomerge
: required by KSPPpti=on
: required by KSPP
Create the Control Plane Nodes
metal device create \
--project-id $PROJECT_ID \
--facility $FACILITY \
--ipxe-script-url $PXE_SERVER \
--operating-system "custom_ipxe" \
--plan $PLAN\
--hostname $HOSTNAME\
--userdata-file controlplane.yaml
Note: Repeat this to create each control plane node desired: there should usually be 3 for a HA cluster.
Create the Worker Nodes
metal device create \
--project-id $PROJECT_ID \
--facility $FACILITY \
--ipxe-script-url $PXE_SERVER \
--operating-system "custom_ipxe" \
--plan $PLAN\
--hostname $HOSTNAME\
--userdata-file worker.yaml
Update the Kubernetes endpoint
Now our control plane nodes have been created, and we know their IP addresses, we can associate them with the Kubernetes endpoint.
Configure your load balancer to route traffic to these nodes, or add A
records to your DNS entry for the endpoint, for each control plane node.
e.g.
host endpoint.mydomain.com
endpoint.mydomain.com has address 145.40.90.201
endpoint.mydomain.com has address 147.75.109.71
endpoint.mydomain.com has address 145.40.90.177
Bootstrap Etcd
Set the endpoints
and nodes
for talosctl
:
talosctl --talosconfig talosconfig config endpoint <control plane 1 IP>
talosctl --talosconfig talosconfig config node <control plane 1 IP>
Bootstrap etcd
:
talosctl --talosconfig talosconfig bootstrap
This only needs to be issued to one control plane node.
Retrieve the kubeconfig
At this point we can retrieve the admin kubeconfig
by running:
talosctl --talosconfig talosconfig kubeconfig .
3 - ISO
Talos can be installed on bare-metal machine using an ISO image.
ISO images for amd64
and arm64
architectures are available on the Talos releases page.
Talos doesn’t install itself to disk when booted from an ISO until the machine configuration is applied.
Please follow the getting started guide for the generic steps on how to install Talos.
Note: If there is already a Talos installation on the disk, the machine will boot into that installation when booting from a Talos ISO. The boot order should prefer disk over ISO, or the ISO should be removed after the installation to make Talos boot from disk.
See kernel parameters reference for the list of kernel parameters supported by Talos.
4 - Matchbox
Creating a Cluster
In this guide we will create an HA Kubernetes cluster with 3 worker nodes. We assume an existing load balancer, matchbox deployment, and some familiarity with iPXE.
We leave it up to the user to decide if they would like to use static networking, or DHCP. The setup and configuration of DHCP will not be covered.
Create the Machine Configuration Files
Generating Base Configurations
Using the DNS name of the load balancer, generate the base configuration files for the Talos machines:
$ talosctl gen config talos-k8s-metal-tutorial https://<load balancer IP or DNS>:<port>
created controlplane.yaml
created worker.yaml
created talosconfig
At this point, you can modify the generated configs to your liking.
Optionally, you can specify --config-patch
with RFC6902 jsonpatch which will be applied during the config generation.
Validate the Configuration Files
$ talosctl validate --config controlplane.yaml --mode metal
controlplane.yaml is valid for metal mode
$ talosctl validate --config worker.yaml --mode metal
worker.yaml is valid for metal mode
Publishing the Machine Configuration Files
In bare-metal setups it is up to the user to provide the configuration files over HTTP(S).
A special kernel parameter (talos.config
) must be used to inform Talos about where it should retrieve its configuration file.
To keep things simple we will place controlplane.yaml
, and worker.yaml
into Matchbox’s assets
directory.
This directory is automatically served by Matchbox.
Create the Matchbox Configuration Files
The profiles we will create will reference vmlinuz
, and initramfs.xz
.
Download these files from the release of your choice, and place them in /var/lib/matchbox/assets
.
Profiles
Control Plane Nodes
{
"id": "control-plane",
"name": "control-plane",
"boot": {
"kernel": "/assets/vmlinuz",
"initrd": ["/assets/initramfs.xz"],
"args": [
"initrd=initramfs.xz",
"init_on_alloc=1",
"slab_nomerge",
"pti=on",
"console=tty0",
"console=ttyS0",
"printk.devkmsg=on",
"talos.platform=metal",
"talos.config=http://matchbox.talos.dev/assets/controlplane.yaml"
]
}
}
Note: Be sure to change
http://matchbox.talos.dev
to the endpoint of your matchbox server.
Worker Nodes
{
"id": "default",
"name": "default",
"boot": {
"kernel": "/assets/vmlinuz",
"initrd": ["/assets/initramfs.xz"],
"args": [
"initrd=initramfs.xz",
"init_on_alloc=1",
"slab_nomerge",
"pti=on",
"console=tty0",
"console=ttyS0",
"printk.devkmsg=on",
"talos.platform=metal",
"talos.config=http://matchbox.talos.dev/assets/worker.yaml"
]
}
}
Groups
Now, create the following groups, and ensure that the selector
s are accurate for your specific setup.
{
"id": "control-plane-1",
"name": "control-plane-1",
"profile": "control-plane",
"selector": {
...
}
}
{
"id": "control-plane-2",
"name": "control-plane-2",
"profile": "control-plane",
"selector": {
...
}
}
{
"id": "control-plane-3",
"name": "control-plane-3",
"profile": "control-plane",
"selector": {
...
}
}
{
"id": "default",
"name": "default",
"profile": "default"
}
Boot the Machines
Now that we have our configuration files in place, boot all the machines. Talos will come up on each machine, grab its configuration file, and bootstrap itself.
Bootstrap Etcd
Set the endpoints
and nodes
:
talosctl --talosconfig talosconfig config endpoint <control plane 1 IP>
talosctl --talosconfig talosconfig config node <control plane 1 IP>
Bootstrap etcd
:
talosctl --talosconfig talosconfig bootstrap
Retrieve the kubeconfig
At this point we can retrieve the admin kubeconfig
by running:
talosctl --talosconfig talosconfig kubeconfig .
5 - PXE
Talos can be installed on bare-metal using PXE service. There are two more detailed guides for PXE booting using Matchbox and Digital Rebar.
This guide describes generic steps for PXE booting Talos on bare-metal.
First, download the vmlinuz
and initramfs
assets from the Talos releases page.
Set up the machines to PXE boot from the network (usually by setting the boot order in the BIOS).
There might be options specific to the hardware being used, booting in BIOS or UEFI mode, using iPXE, etc.
Talos requires the following kernel parameters to be set on the initial boot:
talos.platform=metal
slab_nomerge
pti=on
When booted from the network without machine configuration, Talos will start in maintenance mode.
Please follow the getting started guide for the generic steps on how to install Talos.
See kernel parameters reference for the list of kernel parameters supported by Talos.
Note: If there is already a Talos installation on the disk, the machine will boot into that installation when booting from network. The boot order should prefer disk over network.
Talos can automatically fetch the machine configuration from the network on the initial boot using talos.config
kernel parameter.
A metadata service (HTTP service) can be implemented to deliver customized configuration to each node for example by using the MAC address of the node:
talos.config=https://metadata.service/talos/config?mac=${mac}
Note: The
talos.config
kernel parameter supports other substitution variables, see kernel parameters reference for the full list.
6 - Sidero Metal
Sidero Metal is a project created by the Talos team that provides a bare metal installer for Cluster API, and that has native support for Talos Linux. It can be easily installed using clusterctl. The best way to get started with Sidero Metal is to visit the website.