KubeSpan
WireGuard Peer Discovery
The key pieces of information needed for WireGuard generally are:
- the public key of the host you wish to connect to
- an IP address and port of the host you wish to connect to
The latter is really only required of one side of the pair. Once traffic is received, that information is known and updated by WireGuard automatically and internally.
For Kubernetes, though, this is not quite sufficient. Kubernetes also needs to know which traffic goes to which WireGuard peer. Because this information may be dynamic, we need a way to be able to constantly keep this information up to date.
If we have a functional connection to Kubernetes otherwise, it’s fairly easy: we can just keep that information in Kubernetes. Otherwise, we have to have some way to discover it.
In our solution, we have a multi-tiered approach to gathering this information. Each tier can operate independently, but the amalgamation of the tiers produces a more robust set of connection criteria.
For this discussion, we will point out two of these tiers:
- an external service
- a Kubernetes-based system
See discovery service to learn more about the external service.
The Kubernetes-based system utilises annotations on Kubernetes Nodes which describe each node’s public key and local addresses.
On top of this, we also optionally route Pod subnets. This is often (maybe even usually) taken care of by the CNI, but there are many situations where the CNI fails to be able to do this itself, across networks.
NAT, Multiple Routes, Multiple IPs
One of the difficulties in communicating across networks is that there is often not a single address and port which can identify a connection for each node on the system.
For instance, a node sitting on the same network might see its peer as 192.168.2.10
, but a node across the internet may see it as 2001:db8:1ef1::10
.
We need to be able to handle any number of addresses and ports, and we also need to have a mechanism to try them. WireGuard only allows us to select one at a time.
For our implementation, then, we have built a controller which continuously discovers and rotates these IP:port pairs until a connection is established. It then starts trying again if that connection ever fails.
Packet Routing
After we have established a WireGuard connection, our work is not done. We still have to make sure that the right packets get sent to the WireGuard interface.
WireGuard supplies a convenient facility for tagging packets which come from it, which is great. But in our case, we need to be able to allow traffic which both does not come from WireGuard and also is not destined for another Kubernetes node to flow through the normal mechanisms.
Unlike many corporate or privacy-oriented VPNs, we need to allow general internet traffic to flow normally.
Also, as our cluster grows, this set of IP addresses can become quite large and quite dynamic.
This would be very cumbersome and slow in iptables
.
Luckily, the kernel supplies a convenient mechanism by which to define this arbitrarily large set of IP addresses: IP sets.
Talos collects all of the IPs and subnets which are considered “in-cluster” and maintains these in the kernel as an IP set.
Now that we have the IP set defined, we need to tell the kernel how to use it.
The traditional way of doing this would be to use iptables
.
However, there is a big problem with IPTables.
It is a common namespace in which any number of other pieces of software may dump things.
We have no surety that what we add will not be wiped out by something else (from Kubernetes itself, to the CNI, to some workload application), be rendered unusable by higher-priority rules, or just generally cause trouble and conflicts.
Instead, we use a three-pronged system which is both more foundational and less centralised.
NFTables offers a separately namespaced, decentralised way of marking packets for later processing based on IP sets. Instead of a common set of well-known tables, NFTables uses hooks into the kernel’s netfilter system, which are less vulnerable to being usurped, bypassed, or a source of interference than IPTables, but which are rendered down by the kernel to the same underlying XTables system.
Our NFTables system is where we store the IP sets. Any packet which enters the system, either by forward from inside Kubernetes or by generation from the host itself, is compared against a hash table of this IP set. If it is matched, it is marked for later processing by our next stage. This is a high-performance system which exists fully in the kernel and which ultimately becomes an eBPF program, so it scales well to hundreds of nodes.
The next stage is the kernel router’s route rules. These are defined as a common ordered list of operations for the whole operating system, but they are intended to be tightly constrained and are rarely used by applications in any case. The rules we add are very simple: if a packet is marked by our NFTables system, send it to an alternate routing table.
This leads us to our third and final stage of packet routing. We have a custom routing table with two rules:
- send all IPv4 traffic to the WireGuard interface
- send all IPv6 traffic to the WireGuard interface
So in summary, we:
- mark packets destined for Kubernetes applications or Kubernetes nodes
- send marked packets to a special routing table
- send anything which is sent to that routing table through the WireGuard interface
This gives us an isolated, resilient, tolerant, and non-invasive way to route Kubernetes traffic safely, automatically, and transparently through WireGuard across almost any set of network topologies.
Design Decisions
Routing
Routing for Wireguard is a touch complicated when the set of possible peer endpoints includes at least one member of the set of destinations. That is, packets from Wireguard to a peer endpoint should not be sent to Wireguard, lest a loop be created.
In order to handle this situation, Wireguard provides the ability to mark packets which it generates, so their routing can be handled separately.
In our case, though, we actually want the inverse of this: we want to route Wireguard packets however the normal networking routes and rules say they should be routed, while packets destined for the other side of Wireguard Peers should be forced into Wireguard interfaces.
While IP Rules allow you to invert matches, they do not support matching based on IP sets. That means, to use simple rules, we would have to add a rule for each destination, which could reach into hundreds or thousands of rules to manage. This is not really much of a performance issue, but it is a management issue, since it is expected that we would not be the only manager of rules in the system, and rules offer no facility to tag for ownership.
IP Sets are supported by IPTables, and we could integrate there. However, IPTables exists in a global namespace, which makes it fragile having multiple parties manipulating it. The newer NFTables replacement for IPTables, though, allows users to independently hook into various points of XTables, keeping all such rules and sets independent. This means that regardless of what CNIs or other user-side routing rules may do, our KubeSpan setup will not be messed up.
Therefore, we utilise NFTables (which natively supports IP sets and owner
grouping) instead, to mark matching traffic which should be sent to the
Wireguard interface.
This way, we can keep all our KubeSpan set logic in one place, allowing us to
simply use a single ip rule
match:
for our fwmark, and sending those matched packets to a separate routing table
with one rule: default to the wireguard interface.
So we have three components:
- A routing table for Wireguard-destined packets
- An NFTables table which defines the set of destinations packets to which will
be marked with our firewall mark.
- Hook into PreRouting (type Filter)
- Hook into Outgoing (type Route)
- One IP Rule which sends packets marked with our firewall mark to our Wireguard routing table.
Routing Table
The routing table (number 180 by default) is simple, containing a single route for each family: send everything through the Wireguard interface.
NFTables
The logic inside NFTables is fairly simple.
First, everything is compiled into a single table: talos_kubespan
.
Next, two chains are set up: one for the prerouting
hook (kubespan_prerouting
)
and the other for the outgoing
hook (kubespan_outgoing
).
We define two sets of target IP prefixes: one for IPv6 (kubespan_targets_ipv6
)
and the other for IPv4 (kubespan_targets_ipv4
).
Last, we add rules to each chain which basically specify:
- If the packet is marked as from Wireguard, just accept it and terminate the chain.
- If the packet matches an IP in either of the target IP sets, mark that packet with the to Wireguard mark.
Rules
There are two route rules defined: one to match IPv6 packets and the other to match IPv4 packets.
These rules say the same thing for each: if the packet is marked that it should go to Wireguard, send it to the Wireguard routing table.
Firewall Mark
KubeSpan is using only two bits of the firewall mark with the mask 0x00000060
.
Note: if other software on the node is using the bits
0x60
of the firewall mark, this might cause conflicts and break KubeSpan.At the moment of the writing, it was confirmed that Calico CNI is using bits
0xffff0000
and Cilium CNI is using bits0xf00
, so KubeSpan is compatible with both. Flannel CNI uses0x4000
mask, so it is also compatible.
In the routing rules table, we match on the mark 0x40
with the mask 0x60
:
32500: from all fwmark 0x40/0x60 lookup 180
In the NFTables table, we match with the same mask 0x60
and we set the mask by only modifying
bits from the 0x60
mask:
meta mark & 0x00000060 == 0x00000020 accept
ip daddr @kubespan_targets_ipv4 meta mark set meta mark & 0xffffffdf | 0x00000040 accept
ip6 daddr @kubespan_targets_ipv6 meta mark set meta mark & 0xffffffdf | 0x00000040 accept