If you’re interested in this project and would like to help in engineering efforts, or have general usage questions, we are happy to have you!
We hold a weekly meeting that all audiences are welcome to attend.
We would appreciate your feedback so that we can make Talos even better!
To do so, you can take our survey.
You can subscribe to this meeting by joining the community forum above.
Enterprise
If you are using Talos in a production setting, and need consulting services to get started or to integrate Talos into your existing environment, we can help.
Sidero Labs, Inc. offers support contracts with SLA (Service Level Agreement)-bound terms for mission-critical environments.
Talos is a container optimized Linux distro; a reimagining of Linux for distributed systems such as Kubernetes.
Designed to be as minimal as possible while still maintaining practicality.
For these reasons, Talos has a number of features unique to it:
it is immutable
it is atomic
it is ephemeral
it is minimal
it is secure by default
it is managed via a single declarative configuration file and gRPC API
Talos can be deployed on container, cloud, virtualized, and bare metal platforms.
Why Talos
In having less, Talos offers more.
Security.
Efficiency.
Resiliency.
Consistency.
All of these areas are improved simply by having less.
1.2 - Quickstart
The easiest way to try Talos is by using the CLI (talosctl) to create a cluster on a machine with docker installed.
The talosctl command needs some configuration options to connect to the right node.
By default talosctl looks for a file called config located at $HOME/.talos.
You can also override which configuration talosctl uses by specifying the --talosconfig parameter:
talosctl --talosconfig talosconfig
Configuring the endpoints:
talosctl config endpoint <endpoint>...
Endpoints are the communication endpoints to which the client directly talks.
These can be load balancers, DNS hostnames, a list of IPs, etc.
In general, it is recommended that these point to the set of control plane
nodes, either directly or through a reverse proxy or load balancer.
Each endpoint will automatically proxy requests destined to another node through
it, so it is not necessary to change the endpoint configuration just because you
wish to talk to a different node within the cluster.
Endpoints do, however, need to be members of the same Talos cluster as the
target node, because these proxied connections reply on certificate-based
authentication.
Configuring the nodes:
talosctl config nodes <node>...
The node is the target node on which you wish to perform the API call.
While you can configure the target node (or even set of target nodes) inside the
’talosctl’ configuration file, it is often useful to simply and explicitly
declare the target node(s) using the -n or --nodes command-line parameter.
Keep in mind, when specifying nodes that their IPs and/or hostnames are as seen by the endpoint servers, not as from the client.
This is because all connections are proxied first through the endpoints.
To verify what node(s) you’re currently talking to, you can run:
$ talosctl version
Client:
...
Server:
NODE: <node>
...
1.4 - System Requirements
Minimum Requirements
Role
Memory
Cores
Init/Control Plane
2GB
2
Worker
1GB
1
Recommended
Role
Memory
Cores
Init/Control Plane
4GB
4
Worker
2GB
2
These requirements are similar to that of kubernetes.
2 - Bare Metal Platforms
2.1 - Digital Rebar
In this guide we will create an Kubernetes cluster with 1 worker node, and 2 controlplane nodes using an existing digital rebar deployment.
In this guide we will create an Kubernetes cluster with 1 worker node, and 2 controlplane nodes.
We assume an existing digital rebar deployment, and some familiarity with iPXE.
We leave it up to the user to decide if they would like to use static networking, or DHCP.
The setup and configuration of DHCP will not be covered.
Create the Machine Configuration Files
Generating Base Configurations
Using the DNS name of the load balancer, generate the base configuration files for the Talos machines:
$ talosctl gen config talos-k8s-metal-tutorial https://<load balancer IP or DNS>:<port>
created init.yaml
created controlplane.yaml
created join.yaml
created talosconfig
The loadbalancer is used to distribute the load across multiple controlplane nodes.
This isn’t covered in detail, because we asume some loadbalancing knowledge before hand.
If you think this should be added to the docs, please create a issue.
At this point, you can modify the generated configs to your liking.
Validate the Configuration Files
$ talosctl validate --config init.yaml --mode metal
init.yaml is valid for metal mode
$ talosctl validate --config controlplane.yaml --mode metal
controlplane.yaml is valid for metal mode
$ talosctl validate --config join.yaml --mode metal
join.yaml is valid for metal mode
Publishing the Machine Configuration Files
Digital Rebar has a build-in fileserver, which means we can use this feature to expose the talos configuration files.
We will place init.yaml, controlplane.yaml, and worker.yaml into Digital Rebar file server by using the drpcli tools.
Copy the generated files from the step above into your Digital Rebar installation.
drpcli file upload <file>.yaml as <file>.yaml
Replacing <file> with init, controlplane or worker.
Download the boot files
Download a recent version of boot.tar.gz from github.
This guide assumes the user has a working API token, the Equinix Metal CLI installed, and some familiarity with the CLI.
Network Booting
To install Talos to a server a working TFTP and iPXE server are needed.
How this is done varies and is left as an exercise for the user.
In general this requires a Talos kernel vmlinuz and initramfs.
These assets can be downloaded from a given release.
Special Considerations
PXE Boot Kernel Parameters
The following is a list of kernel parameters required by Talos:
talos.platform: set this to packet
init_on_alloc=1: required by KSPP
init_on_free=1: required by KSPP
slab_nomerge: required by KSPP
pti=on: required by KSPP
User Data
To configure a Talos you can use the metadata service provide by Equinix Metal.
It is required to add a shebang to the top of the configuration file.
The shebang is arbitrary in the case of Talos, and the convention we use is #!talos.
Creating a Cluster via the Equinix Metal CLI
Control Plane Endpoint
The strategy used for an HA cluster varies and is left as an exercise for the user.
Some of the known ways are:
DNS
Load Balancer
BGP
Create the Machine Configuration Files
Generating Base Configurations
Using the DNS name of the loadbalancer created earlier, generate the base configuration files for the Talos machines:
$ talosctl gen config talos-k8s-aws-tutorial https://<load balancer IP or DNS>:<port>
created init.yaml
created controlplane.yaml
created join.yaml
created talosconfig
Now add the required shebang (e.g. #!talos) at the top of init.yaml, controlplane.yaml, and join.yaml
At this point, you can modify the generated configs to your liking.
Validate the Configuration Files
talosctl validate --config init.yaml --mode metal
talosctl validate --config controlplane.yaml --mode metal
talosctl validate --config join.yaml --mode metal
Note: Validation of the install disk could potentially fail as the validation
is performed on you local machine and the specified disk may not exist.
In this guide we will create an HA Kubernetes cluster with 3 worker nodes using an existing load balancer and matchbox deployment.
Creating a Cluster
In this guide we will create an HA Kubernetes cluster with 3 worker nodes.
We assume an existing load balancer, matchbox deployment, and some familiarity with iPXE.
We leave it up to the user to decide if they would like to use static networking, or DHCP.
The setup and configuration of DHCP will not be covered.
Create the Machine Configuration Files
Generating Base Configurations
Using the DNS name of the load balancer, generate the base configuration files for the Talos machines:
$ talosctl gen config talos-k8s-metal-tutorial https://<load balancer IP or DNS>:<port>
created init.yaml
created controlplane.yaml
created join.yaml
created talosconfig
At this point, you can modify the generated configs to your liking.
Validate the Configuration Files
$ talosctl validate --config init.yaml --mode metal
init.yaml is valid for metal mode
$ talosctl validate --config controlplane.yaml --mode metal
controlplane.yaml is valid for metal mode
$ talosctl validate --config join.yaml --mode metal
join.yaml is valid for metal mode
Publishing the Machine Configuration Files
In bare-metal setups it is up to the user to provide the configuration files over HTTP(S).
A special kernel parameter (talos.config) must be used to inform Talos about where it should retreive its’ configuration file.
To keep things simple we will place init.yaml, controlplane.yaml, and join.yaml into Matchbox’s assets directory.
This directory is automatically served by Matchbox.
Create the Matchbox Configuration Files
The profiles we will create will reference vmlinuz, and initramfs.xz.
Download these files from the release of your choice, and place them in /var/lib/matchbox/assets.
Now that we have our configuraton files in place, boot all the machines.
Talos will come up on each machine, grab its’ configuration file, and bootstrap itself.
Retrieve the kubeconfig
At this point we can retrieve the admin kubeconfig by running:
In order to install Talos in Proxmox, you will need the ISO image from the Talos release page.
You can download talos-amd64.iso via
github.com/talos-systems/talos/releases
From the Proxmox UI, select the “local” storage and enter the “Content” section.
Click the “Upload” button:
Select the ISO you downloaded previously, then hit “Upload”
Create VMs
Start by creating a new VM by clicking the “Create VM” button in the Proxmox UI:
Fill out a name for the new VM:
In the OS tab, select the ISO we uploaded earlier:
Keep the defaults set in the “System” tab.
Keep the defaults in the “Hard Disk” tab as well, only changing the size if desired.
In the “CPU” section, give at least 2 cores to the VM:
Verify that the RAM is set to at least 2GB:
Keep the default values for networking, verifying that the VM is set to come up on the bridge interface:
Finish creating the VM by clicking through the “Confirm” tab and then “Finish”.
Repeat this process for a second VM to use as a worker node.
You can also repeat this for additional nodes desired.
Start Control Plane Node
Once the VMs have been created and updated, start the VM that will be the first control plane node.
This VM will boot the ISO image specified earlier and enter “maintenance mode”.
Once the machine has entered maintenance mode, there will be a console log that details the IP address that the node received.
Take note of this IP address, which will be referred to as $CONTROL_PLANE_IP for the rest of this guide.
If you wish to export this IP as a bash variable, simply issue a command like export CONTROL_PLANE_IP=1.2.3.4.
Generate Machine Configurations
With the IP address above, you can now generate the machine configurations to use for installing Talos and Kubernetes.
Issue the following command, updating the output directory, cluster name, and control plane IP as you see fit:
talosctl gen config talos-vbox-cluster https://$CONTROL_PLANE_IP:6443 --output-dir _out
This will create several files in the _out directory: init.yaml, controlplane.yaml, join.yaml, and talosconfig.
Create Control Plane Node
Using the init.yaml generated above, you can now apply this config using talosctl.
Issue:
You should now see some action in the Proxmox console for this VM.
Talos will be installed to disk, the VM will reboot, and then Talos will configure the Kubernetes control plane on this VM.
Note: This process can be repeated multiple times to create an HA control plane.
Simply apply controlplane.yaml instead of init.yaml for subsequent nodes.
Create Worker Node
Create at least a single worker node using a process similar to the control plane creation above.
Start the worker node VM and wait for it to enter “maintenance mode”.
Take note of the worker node’s IP address, which will be referred to as $WORKER_IP
Note: This process can be repeated multiple times to add additional workers.
Using the Cluster
Once the cluster is available, you can make use of talosctl and kubectl to interact with the cluster.
For example, to view current running containers, run talosctl containers for a list of containers in the system namespace, or talosctl containers -k for the k8s.io namespace.
To view the logs of a container, use talosctl logs <container> or talosctl logs -k <container>.
First, configure talosctl to talk to your control plane node by issuing the following, updating paths and IPs as necessary:
Fetch the kubeconfig file from the control plane node by issuing:
talosctl kubeconfig
You can then use kubectl in this fashion:
kubectl get nodes
Cleaning Up
To cleanup, simply stop and delete the virtual machines from the Proxmox UI.
3.4 - VMware
Creating Talos Kubernetes cluster using VMware.
Creating a Cluster via the govc CLI
In this guide we will create an HA Kubernetes cluster with 3 worker nodes.
We will use the govc cli which can be downloaded here.
Prerequisites
Prior to starting, it is important to have the following infrastructure in place and available:
DHCP server
Load Balancer or DNS address for cluster endpoint
If using a load balancer, the most common setup is to balance tcp/443 across the control plane nodes tcp/6443
If using a DNS address, the A record should return back the addresses of the control plane nodes
Create the Machine Configuration Files
Generating Base Configurations
Using the DNS name or name of the loadbalancer used in the prereq steps, generate the base configuration files for the Talos machines:
$ talosctl gen config talos-k8s-vmware-tutorial https://<load balancer IP or DNS>:<port>
created init.yaml
created controlplane.yaml
created join.yaml
created talosconfig
$ talosctl gen config talos-k8s-vmware-tutorial https://<DNS name>:6443
created init.yaml
created controlplane.yaml
created join.yaml
created talosconfig
At this point, you can modify the generated configs to your liking.
Validate the Configuration Files
$ talosctl validate --config init.yaml --mode cloud
init.yaml is valid for cloud mode
$ talosctl validate --config controlplane.yaml --mode cloud
controlplane.yaml is valid for cloud mode
$ talosctl validate --config join.yaml --mode cloud
join.yaml is valid for cloud mode
Set Environment Variables
govc makes use of the following environment variables
A talos.ova asset is published with each release.
We will refer to the version of the release as $TALOS_VERSION below.
It can be easily exported with export TALOS_VERSION="v0.3.0-alpha.10" or similar.
We’ll need to repeat this step for each Talos node we want to create.
In a typical HA setup, we’ll have 3 control plane nodes and N workers.
In the following example, we’ll setup a HA control plane with two worker nodes.
Talos makes use of the guestinfo facility of VMware to provide the machine/cluster configuration.
This can be set using the govc vm.change command.
To facilitate persistent storage using the vSphere cloud provider integration with Kubernetes, disk.enableUUID=1 is used.
Talos is known to work on Xen; however, it is currently undocumented.
4 - Cloud Platforms
4.1 - AWS
Creating a cluster via the AWS CLI.
Creating a Cluster via the AWS CLI
In this guide we will create an HA Kubernetes cluster with 3 worker nodes.
We assume an existing VPC, and some familiarity with AWS.
If you need more information on AWS specifics, please see the official AWS documentation.
Take note of the DNS name and ARN.
We will need these soon.
Create the Machine Configuration Files
Generating Base Configurations
Using the DNS name of the loadbalancer created earlier, generate the base configuration files for the Talos machines:
$ talosctl gen config talos-k8s-aws-tutorial https://<load balancer IP or DNS>:<port>
created init.yaml
created controlplane.yaml
created join.yaml
created talosconfig
Take note that in this version of Talos, the generated configs are too long for AWS userdata field.
Comments can be removed to workaround this with a sed command like:
In this guide we will create an HA Kubernetes cluster with 1 worker node.
We assume existing Blob Storage, and some familiarity with Azure.
If you need more information on Azure specifics, please see the official Azure documentation.
Environment Setup
We’ll make use of the following environment variables throughout the setup.
Edit the variables below with your correct information.
# Storage account to useexportSTORAGE_ACCOUNT="StorageAccountName"# Storage container to upload toexportSTORAGE_CONTAINER="StorageContainerName"# Resource group nameexportGROUP="ResourceGroupName"# LocationexportLOCATION="centralus"# Get storage account connection string based on info aboveexportCONNECTION=$(az storage account show-connection-string \
-n $STORAGE_ACCOUNT\
-g $GROUP\
-o tsv)
Create the Image
First, download the Azure image from a Talos release.
Once downloaded, untar with tar -xvf /path/to/azure-amd64.tar.gz
Upload the VHD
Once you have pulled down the image, you can upload it to blob storage with:
Now that the image is present in our blob storage, we’ll register it.
az image create \
--name talos \
--source https://$STORAGE_ACCOUNT.blob.core.windows.net/$STORAGE_CONTAINER/talos-azure.vhd \
--os-type linux \
-g $GROUP
Network Infrastructure
Virtual Networks and Security Groups
Once the image is prepared, we’ll want to work through setting up the network.
Issue the following to create a network security group and add rules to it.
In Azure, we have to pre-create the NICs for our control plane so that they can be associated with our load balancer.
for i in $( seq 012); do# Create public IP for each nic az network public-ip create \
--resource-group $GROUP\
--name talos-controlplane-public-ip-$i\
--allocation-method static
# Create nic az network nic create \
--resource-group $GROUP\
--name talos-controlplane-nic-$i\
--vnet-name talos-vnet \
--subnet talos-subnet \
--network-security-group talos-sg \
--public-ip-address talos-controlplane-public-ip-$i\
--lb-name talos-lb \
--lb-address-pools talos-be-pool
done
Cluster Configuration
With our networking bits setup, we’ll fetch the IP for our load balancer and create our configuration files.
LB_PUBLIC_IP=$(az network public-ip show \
--resource-group $GROUP\
--name talos-public-ip \
--query [ipAddress]\
--output tsv)talosctl gen config talos-k8s-azure-tutorial https://${LB_PUBLIC_IP}:6443
Compute Creation
We are now ready to create our azure nodes.
# Create availability setaz vm availability-set create \
--name talos-controlplane-av-set \
-g $GROUP# Create controlplane 0az vm create \
--name talos-controlplane-0 \
--image talos \
--custom-data ./init.yaml \
-g $GROUP\
--admin-username talos \
--generate-ssh-keys \
--verbose \
--boot-diagnostics-storage $STORAGE_ACCOUNT\
--os-disk-size-gb 20\
--nics talos-controlplane-nic-0 \
--availability-set talos-controlplane-av-set \
--no-wait
# Create 2 more controlplane nodesfor i in $( seq 12); do az vm create \
--name talos-controlplane-$i\
--image talos \
--custom-data ./controlplane.yaml \
-g $GROUP\
--admin-username talos \
--generate-ssh-keys \
--verbose \
--boot-diagnostics-storage $STORAGE_ACCOUNT\
--os-disk-size-gb 20\
--nics talos-controlplane-nic-$i\
--availability-set talos-controlplane-av-set \
--no-wait
done# Create worker node az vm create \
--name talos-worker-0 \
--image talos \
--vnet-name talos-vnet \
--subnet talos-subnet \
--custom-data ./join.yaml \
-g $GROUP\
--admin-username talos \
--generate-ssh-keys \
--verbose \
--boot-diagnostics-storage $STORAGE_ACCOUNT\
--nsg talos-sg \
--os-disk-size-gb 20\
--no-wait
# NOTES:# `--admin-username` and `--generate-ssh-keys` are required by the az cli,# but are not actually used by talos# `--os-disk-size-gb` is the backing disk for Kubernetes and any workload containers# `--boot-diagnostics-storage` is to enable console output which may be necessary# for troubleshooting
Retrieve the kubeconfig
You should now be able to interact with your cluster with talosctl.
We will need to discover the public IP for our first control plane node first.
In this guide we will create an HA Kubernetes cluster with 1 worker node.
We assume an existing Space, and some familiarity with DigitalOcean.
If you need more information on DigitalOcean specifics, please see the official DigitalOcean documentation.
Create the Image
First, download the DigitalOcean image from a Talos release.
Extract the archive to get the disk.raw file, compress it using gzip to disk.raw.gz.
Using an upload method of your choice (doctl does not have Spaces support), upload the image to a space.
Now, create an image using the URL of the uploaded image:
We will need the IP of the load balancer.
Using the ID of the load balancer, run:
doctl compute load-balancer get --format IP <load balancer ID>
Save it, as we will need it in the next step.
Create the Machine Configuration Files
Generating Base Configurations
Using the DNS name of the loadbalancer created earlier, generate the base configuration files for the Talos machines:
$ talosctl gen config talos-k8s-digital-ocean-tutorial https://<load balancer IP or DNS>:<port>
created init.yaml
created controlplane.yaml
created join.yaml
created talosconfig
At this point, you can modify the generated configs to your liking.
Validate the Configuration Files
$ talosctl validate --config init.yaml --mode cloud
init.yaml is valid for cloud mode
$ talosctl validate --config controlplane.yaml --mode cloud
controlplane.yaml is valid for cloud mode
$ talosctl validate --config join.yaml --mode cloud
join.yaml is valid for cloud mode
Note: Although SSH is not used by Talos, DigitalOcean still requires that an SSH key be associated with the droplet.
Create a dummy key that can be used to satisfy this requirement.
Create the Remaining Control Plane Nodes
Run the following twice, to give ourselves three total control plane nodes:
Creating a cluster via the CLI on Google Cloud Platform.
Creating a Cluster via the CLI
In this guide, we will create an HA Kubernetes cluster in GCP with 1 worker node.
We will assume an existing Cloud Storage bucket, and some familiarity with Google Cloud.
If you need more information on Google Cloud specifics, please see the official Google documentation.
Environment Setup
We’ll make use of the following environment variables throughout the setup.
Edit the variables below with your correct information.
# Storage account to useexportSTORAGE_BUCKET="StorageBucketName"# RegionexportREGION="us-central1"
Create the Image
First, download the Google Cloud image from a Talos release.
These images are called gcp-$ARCH.tar.gz.
Upload the Image
Once you have downloaded the image, you can upload it to your storage bucket with:
Once the image is prepared, we’ll want to work through setting up the network.
Issue the following to create a firewall, load balancer, and their required components.
In this guide, we will create an HA Kubernetes cluster in OpenStack with 1 worker node.
We will assume an existing some familiarity with OpenStack.
If you need more information on OpenStack specifics, please see the official OpenStack documentation.
Environment Setup
You should have an existing openrc file.
This file will provide environment variables necessary to talk to your OpenStack cloud.
See here for instructions on fetching this file.
Create the Image
First, download the OpenStack image from a Talos release.
These images are called openstack-$ARCH.tar.gz.
Untar this file with tar -xvf openstack-$ARCH.tar.gz.
The resulting file will be called disk.raw.
Upload the Image
Once you have the image, you can upload to OpenStack with:
openstack image create --public --disk-format raw --file disk.raw talos
Network Infrastructure
Load Balancer and Network Ports
Once the image is prepared, you will need to work through setting up the network.
Issue the following to create a load balancer, the necessary network ports for each control plane node, and associations between the two.
Creating loadbalancer:
# Create load balancer, updating vip-subnet-id if necessaryopenstack loadbalancer create --name talos-control-plane --vip-subnet-id public
# Create listeneropenstack loadbalancer listener create --name talos-control-plane-listener --protocol TCP --protocol-port 6443 talos-control-plane
# Pool and health monitoringopenstack loadbalancer pool create --name talos-control-plane-pool --lb-algorithm ROUND_ROBIN --listener talos-control-plane-listener --protocol TCP
openstack loadbalancer healthmonitor create --delay 5 --max-retries 4 --timeout 10 --type TCP talos-control-plane-pool
Creating ports:
# Create ports for control plane nodes, updating network name if necessaryopenstack port create --network shared talos-control-plane-1
openstack port create --network shared talos-control-plane-2
openstack port create --network shared talos-control-plane-3
# Create floating IPs for the ports, so that you will have talosctl connectivity to each control planeopenstack floating ip create --port talos-control-plane-1 public
openstack floating ip create --port talos-control-plane-2 public
openstack floating ip create --port talos-control-plane-3 public
Note: Take notice of the private and public IPs associated with each of these ports, as they will be used in the next step.
Additionally, take node of the port ID, as it will be used in server creation.
Associate port’s private IPs to loadbalancer:
# Create members for each port IP, updating subnet-id and address as necessary.openstack loadbalancer member create --subnet-id shared-subnet --address <PRIVATE IP OF talos-control-plane-1 PORT> --protocol-port 6443 talos-control-plane-pool
openstack loadbalancer member create --subnet-id shared-subnet --address <PRIVATE IP OF talos-control-plane-2 PORT> --protocol-port 6443 talos-control-plane-pool
openstack loadbalancer member create --subnet-id shared-subnet --address <PRIVATE IP OF talos-control-plane-3 PORT> --protocol-port 6443 talos-control-plane-pool
Security Groups
This example uses the default security group in OpenStack.
Ports have been opened to ensure that connectivity from both inside and outside the group is possible.
You will want to allow, at a minimum, ports 6443 (Kubernetes API server) and 50000 (Talos API) from external sources.
It is also recommended to allow communication over all ports from within the subnet.
Cluster Configuration
With our networking bits setup, we’ll fetch the IP for our load balancer and create our configuration files.
LB_PUBLIC_IP=$(openstack loadbalancer show talos-control-plane -f json | jq -r .vip_address)talosctl gen config talos-k8s-openstack-tutorial https://${LB_PUBLIC_IP}:6443
Compute Creation
We are now ready to create our OpenStack nodes.
Create control plane:
# Create control plane 1. Substitute the correct path to configuration files and the desired flavor.openstack server create talos-control-plane-1 --flavor m1.small --nic port-id=talos-control-plane-1 --image talos --user-data /path/to/init.yaml
# Create control planes 2 and 3, substituting the same info.for i in $( seq 23); do openstack server create talos-control-plane-$i --flavor m1.small --nic port-id=talos-control-plane-$i --image talos --user-data /path/to/controlplane.yaml
done
Create worker:
# Update network name as necessary.openstack server create talos-worker-1 --flavor m1.small --network shared --image talos --user-data /path/to/join.yaml
Note: This step can be repeated to add more workers.
Retrieve the kubeconfig
You should now be able to interact with your cluster with talosctl.
We will use one of the floating IPs we allocated earlier.
It does not matter which one.
In this guide we will create a Kubernetes cluster in Docker, using a containerized version of Talos.
Running Talos in Docker is intended to be used in CI pipelines, and local testing when you need a quick and easy cluster.
Furthermore, if you are running Talos in production, it provides an excellent way for developers to develop against the same version of Talos.
Requirements
The follow are requirements for running Talos in Docker:
Due to the fact that Talos runs in a container, certain APIs are not available when running in Docker.
For example upgrade, reset, and APIs like these don’t apply in container mode.
Create the Cluster
Creating a local cluster is as simple as:
talosctl cluster create --wait
Once the above finishes successfully, your talosconfig(~/.talos/config) will be configured to point to the new cluster.
If you are running on MacOS, an additional command is required:
talosctl config --endpoints 127.0.0.1
Note: Startup times can take up to a minute before the cluster is available.
Once the cluster is available, you can make use of talosctl and kubectl to interact with the cluster.
For example, to view current running containers, run talosctl containers for a list of containers in the system namespace, or talosctl containers -k for the k8s.io namespace.
To view the logs of a container, use talosctl logs <container> or talosctl logs -k <container>.
Cleaning Up
To cleanup, run:
talosctl cluster destroy
5.2 - Firecracker
Creating Talos Kubernetes cluster using Firecracker VMs.
In this guide we will create a Kubernetes cluster using Firecracker.
Note: Talos on QEMU offers easier way to run Talos in a set of VMs.
Requirements
Linux
a kernel with
KVM enabled (/dev/kvm must exist)
CONFIG_NET_SCH_NETEM enabled
CONFIG_NET_SCH_INGRESS enabled
at least CAP_SYS_ADMIN and CAP_NET_ADMIN capabilities
go get -d github.com/awslabs/tc-redirect-tap/cmd/tc-redirect-tap
cd$GOPATH/src/github.com/awslabs/tc-redirect-tap
make all
sudo cp tc-redirect-tap /opt/cni/bin
Note: if $GOPATH is not set, it defaults to ~/go.
Install Talos kernel and initramfs
Firecracker provisioner depends on Talos uncompressed kernel (vmlinuz) and initramfs (initramfs.xz).
These files can be downloaded from the Talos release:
Once the above finishes successfully, your talosconfig(~/.talos/config) will be configured to point to the new cluster.
Retrieve and Configure the kubeconfig
talosctl kubeconfig .
Using the Cluster
Once the cluster is available, you can make use of talosctl and kubectl to interact with the cluster.
For example, to view current running containers, run talosctl containers for a list of containers in the system namespace, or talosctl containers -k for the k8s.io namespace.
To view the logs of a container, use talosctl logs <container> or talosctl logs -k <container>.
A bridge interface will be created, and assigned the default IP 10.5.0.1.
Each node will be directly accessible on the subnet specified at cluster creation time.
A loadbalancer runs on 10.5.0.1 by default, which handles loadbalancing for the Talos, and Kubernetes APIs.
You can see a summary of the cluster state by running:
$ talosctl cluster show --provisioner firecracker
PROVISIONER firecracker
NAME talos-default
NETWORK NAME talos-default
NETWORK CIDR 10.5.0.0/24
NETWORK GATEWAY 10.5.0.1
NETWORK MTU 1500NODES:
NAME TYPE IP CPU RAM DISK
talos-default-master-1 Init 10.5.0.2 1.00 1.6 GB 4.3 GB
talos-default-master-2 ControlPlane 10.5.0.3 1.00 1.6 GB 4.3 GB
talos-default-master-3 ControlPlane 10.5.0.4 1.00 1.6 GB 4.3 GB
talos-default-worker-1 Join 10.5.0.5 1.00 1.6 GB 4.3 GB
Note: In that case that the host machine is rebooted before destroying the cluster, you may need to manually remove ~/.talos/clusters/talos-default.
Manual Clean Up
The talosctl cluster destroy command depends heavily on the clusters state directory.
It contains all related information of the cluster.
The PIDs and network associated with the cluster nodes.
If you happened to have deleted the state folder by mistake or you would like to cleanup
the environment, here are the steps how to do it manually:
Stopping VMs
Find the process of firecracker --api-sock execute:
ps -elf | grep '[f]irecracker --api-sock'
To stop the VMs manually, execute:
sudo kill -s SIGTERM <PID>
Example output, where VMs are running with PIDs 158065 and 158216
This is more tricky part as if you have already deleted the state folder.
If you didn’t then it is written in the state.yaml in the
/root/.talos/clusters/<cluster-name> directory.
In this guide we will create a Kubernetes cluster using QEMU.
Video Walkthrough
To see a live demo of this writeup, see the video below:
Requirements
Linux
a kernel with
KVM enabled (/dev/kvm must exist)
CONFIG_NET_SCH_NETEM enabled
CONFIG_NET_SCH_INGRESS enabled
at least CAP_SYS_ADMIN and CAP_NET_ADMIN capabilities
QEMU
bridge, static and firewall CNI plugins from the standard CNI plugins, and tc-redirect-tap CNI plugin from the awslabs tc-redirect-tap installed to /opt/cni/bin (installed automatically by talosctl)
iptables
/var/run/netns directory should exist
Installation
How to get QEMU
Install QEMU with your operating system package manager.
For example, on Ubuntu for x86:
Before the first cluster is created, talosctl will download the CNI bundle for the VM provisioning and install it to ~/.talos/cni directory.
Once the above finishes successfully, your talosconfig (~/.talos/config) will be configured to point to the new cluster, and kubeconfig will be
downloaded and merged into default kubectl config location (~/.kube/config).
Once the cluster is available, you can make use of talosctl and kubectl to interact with the cluster.
For example, to view current running containers, run talosctl -n 10.5.0.2 containers for a list of containers in the system namespace, or talosctl -n 10.5.0.2 containers -k for the k8s.io namespace.
To view the logs of a container, use talosctl -n 10.5.0.2 logs <container> or talosctl -n 10.5.0.2 logs -k <container>.
A bridge interface will be created, and assigned the default IP 10.5.0.1.
Each node will be directly accessible on the subnet specified at cluster creation time.
A loadbalancer runs on 10.5.0.1 by default, which handles loadbalancing for the Kubernetes APIs.
You can see a summary of the cluster state by running:
$ talosctl cluster show --provisioner qemu
PROVISIONER qemu
NAME talos-default
NETWORK NAME talos-default
NETWORK CIDR 10.5.0.0/24
NETWORK GATEWAY 10.5.0.1
NETWORK MTU 1500NODES:
NAME TYPE IP CPU RAM DISK
talos-default-master-1 Init 10.5.0.2 1.00 1.6 GB 4.3 GB
talos-default-master-2 ControlPlane 10.5.0.3 1.00 1.6 GB 4.3 GB
talos-default-master-3 ControlPlane 10.5.0.4 1.00 1.6 GB 4.3 GB
talos-default-worker-1 Join 10.5.0.5 1.00 1.6 GB 4.3 GB
Note: In that case that the host machine is rebooted before destroying the cluster, you may need to manually remove ~/.talos/clusters/talos-default.
Manual Clean Up
The talosctl cluster destroy command depends heavily on the clusters state directory.
It contains all related information of the cluster.
The PIDs and network associated with the cluster nodes.
If you happened to have deleted the state folder by mistake or you would like to cleanup
the environment, here are the steps how to do it manually:
Remove VM Launchers
Find the process of talosctl qemu-launch:
ps -elf | grep 'talosctl qemu-launch'
To remove the VMs manually, execute:
sudo kill -s SIGTERM <PID>
Example output, where VMs are running with PIDs 157615 and 157617
This is more tricky part as if you have already deleted the state folder.
If you didn’t then it is written in the state.yaml in the
~/.talos/clusters/<cluster-name> directory.
In order to install Talos in VirtualBox, you will need the ISO image from the Talos release page.
You can download talos-amd64.iso via
github.com/talos-systems/talos/releases
Start by creating a new VM by clicking the “New” button in the VirtualBox UI:
Supply a name for this VM, and specify the Type and Version:
Edit the memory to supply at least 2GB of RAM for the VM:
Proceed through the disk settings, keeping the defaults.
You can increase the disk space if desired.
Once created, select the VM and hit “Settings”:
In the “System” section, supply at least 2 CPUs:
In the “Network” section, switch the network “Attached To” section to “Bridged Adapter”:
Finally, in the “Storage” section, select the optical drive and, on the right, select the ISO by browsing your filesystem:
Repeat this process for a second VM to use as a worker node.
You can also repeat this for additional nodes desired.
Start Control Plane Node
Once the VMs have been created and updated, start the VM that will be the first control plane node.
This VM will boot the ISO image specified earlier and enter “maintenance mode”.
Once the machine has entered maintenance mode, there will be a console log that details the IP address that the node received.
Take note of this IP address, which will be referred to as $CONTROL_PLANE_IP for the rest of this guide.
If you wish to export this IP as a bash variable, simply issue a command like export CONTROL_PLANE_IP=1.2.3.4.
Generate Machine Configurations
With the IP address above, you can now generate the machine configurations to use for installing Talos and Kubernetes.
Issue the following command, updating the output directory, cluster name, and control plane IP as you see fit:
talosctl gen config talos-vbox-cluster https://$CONTROL_PLANE_IP:6443 --output-dir _out
This will create several files in the _out directory: init.yaml, controlplane.yaml, join.yaml, and talosconfig.
Create Control Plane Node
Using the init.yaml generated above, you can now apply this config using talosctl.
Issue:
You should now see some action in the VirtualBox console for this VM.
Talos will be installed to disk, the VM will reboot, and then Talos will configure the Kubernetes control plane on this VM.
Note: This process can be repeated multiple times to create an HA control plane.
Simply apply controlplane.yaml instead of init.yaml for subsequent nodes.
Create Worker Node
Create at least a single worker node using a process similar to the control plane creation above.
Start the worker node VM and wait for it to enter “maintenance mode”.
Take note of the worker node’s IP address, which will be referred to as $WORKER_IP
Note: This process can be repeated multiple times to add additional workers.
Using the Cluster
Once the cluster is available, you can make use of talosctl and kubectl to interact with the cluster.
For example, to view current running containers, run talosctl containers for a list of containers in the system namespace, or talosctl containers -k for the k8s.io namespace.
To view the logs of a container, use talosctl logs <container> or talosctl logs -k <container>.
First, configure talosctl to talk to your control plane node by issuing the following, updating paths and IPs as necessary:
Insert the SD card to your board, turn it on and wait for the console to show you the instructions for bootstrapping the node.
Following the instructions in the console output to connect to the interactive installer:
talosctl apply-config --insecure --interactive --nodes <node IP or DNS name>
Once the interactive installation is applied, the cluster will form and you can then use kubectl.
Retrieve the kubeconfig
Retrieve the admin kubeconfig by running:
talosctl kubeconfig
6.2 - Libre Computer Board ALL-H3-CC
Installing Talos on Libre Computer Board ALL-H3-CC SBC using raw disk image.
Insert the SD card to your board, turn it on and wait for the console to show you the instructions for bootstrapping the node.
Following the instructions in the console output to connect to the interactive installer:
talosctl apply-config --insecure --interactive --nodes <node IP or DNS name>
Once the interactive installation is applied, the cluster will form and you can then use kubectl.
Retrieve the kubeconfig
Retrieve the admin kubeconfig by running:
talosctl kubeconfig
6.3 - Pine64 Rock64
Installing Talos on Pine64 Rock64 SBC using raw disk image.
Insert the SD card to your board, turn it on and wait for the console to show you the instructions for bootstrapping the node.
Following the instructions in the console output to connect to the interactive installer:
talosctl apply-config --insecure --interactive --nodes <node IP or DNS name>
Once the interactive installation is applied, the cluster will form and you can then use kubectl.
Retrieve the kubeconfig
Retrieve the admin kubeconfig by running:
talosctl kubeconfig
6.4 - Raspberry Pi 4 Model B
Installing Talos on Rpi4 SBC using raw disk image.
At least version v2020.09.03-138a1 of the bootloader (rpi-eeprom) is required.
To update the bootloader we will need an SD card.
Insert the SD card into your computer and run the following:
The path to your SD card can be found using fdisk on Linux or diskutil on Mac OS.
In this example we will assume /dev/mmcblk0.
Remove the SD card from your local machine and insert it into the Raspberry Pi.
Power the Raspberry Pi on, and wait at least 10 seconds.
If successful, the green LED light will blink rapidly (forever), otherwise an error pattern will be displayed.
If an HDMI display is attached then the screen will display green for success or red if a failure occurs.
Power off the Raspberry Pi and remove the SD card from it.
Note: Updating the bootloader only needs to be done once.
Insert the SD card to your board, turn it on and wait for the console to show you the instructions for bootstrapping the node.
Following the instructions in the console output to connect to the interactive installer:
talosctl apply-config --insecure --interactive --nodes <node IP or DNS name>
Once the interactive installation is applied, the cluster will form and you can then use kubectl.
Retrieve the kubeconfig
Retrieve the admin kubeconfig by running:
talosctl kubeconfig
Troubleshooting
The following table can be used to troubleshoot booting issues:
Long Flashes
Short Flashes
Status
0
3
Generic failure to boot
0
4
start*.elf not found
0
7
Kernel image not found
0
8
SDRAM failure
0
9
Insufficient SDRAM
0
10
In HALT state
2
1
Partition not FAT
2
2
Failed to read from partition
2
3
Extended partition not FAT
2
4
File signature/hash mismatch - Pi 4
4
4
Unsupported board type
4
5
Fatal firmware error
4
6
Power failure type A
4
7
Power failure type B
7 - Guides
7.1 - Advanced Networking
Static Addressing
Static addressing is comprised of specifying cidr, routes ( remember to add your default gateway ), and interface.
Most likely you’ll also want to define the nameservers so you have properly functioning DNS.
In some environments you may need to set additional addresses on an interface.
In the following example, we set two additional addresses on the loopback interface.
In this guide we will create a Talos cluster running in an air-gapped environment with all the required images being pulled from an internal registry.
We will use the QEMU provisioner available in talosctl to create a local cluster, but the same approach could be used to deploy Talos in bigger air-gapped networks.
In air-gapped environments, access to the public Internet is restricted, so Talos can’t pull images from public Docker registries (docker.io, ghcr.io, etc.)
We need to identify the images required to install and run Talos.
The same strategy can be used for images required by custom workloads running on the cluster.
The talosctl images command provides a list of default images used by the Talos cluster (with default configuration
settings).
To print the list of images, run:
talosctl images
This list contains images required by a default deployment of Talos.
There might be additional images required for the workloads running on this cluster, and those should be added to this list.
Preparing the Internal Registry
As access to the public registries is restricted, we have to run an internal Docker registry.
In this guide, we will launch the registry on the same machine using Docker:
This registry will be accepting connections on port 6000 on the host IPs.
The registry is empty by default, so we have fill it with the images required by Talos.
First, we pull all the images to our local Docker daemon:
$ for image in `talosctl images`; do docker pull $image; donev0.12.0-amd64: Pulling from coreos/flannel
Digest: sha256:6d451d92c921f14bfb38196aacb6e506d4593c5b3c9d40a8b8a2506010dc3e10
...
All images are now stored in the Docker daemon store:
$ docker images
ghcr.io/talos-systems/install-cni v0.3.0-12-g90722c3 980d36ee2ee1 5 days ago 79.7MB
k8s.gcr.io/kube-proxy-amd64 v1.20.0 33c60812eab8 2 weeks ago 118MB
...
Now we need to re-tag them so that we can push them to our local registry.
We are going to replace the first component of the image name (before the first slash) with our registry endpoint 127.0.0.1:6000:
$ for image in `talosctl images`; do\
docker tag $image`echo$image | sed -E 's#^[^/]+/#127.0.0.1:6000/#'`\
done
As the next step, we push images to the internal registry:
$ for image in `talosctl images`; do\
docker push `echo$image | sed -E 's#^[^/]+/#127.0.0.1:6000/#'`\
done
We can now verify that the images are pushed to the registry:
Note: images in the registry don’t have the registry endpoint prefix anymore.
Launching Talos in an Air-gapped Environment
For Talos to use the internal registry, we use the registry mirror feature to redirect all the image pull requests to the internal registry.
This means that the registry endpoint (as the first component of the image reference) gets ignored, and all pull requests are sent directly to the specified endpoint.
We are going to use a QEMU-based Talos cluster for this guide, but the same approach works with Docker-based clusters as well.
As QEMU-based clusters go through the Talos install process, they can be used better to model a real air-gapped environment.
The talosctl cluster create command provides conveniences for common configuration options.
The only required flag for this guide is --registry-mirror '*'=http://10.5.0.1:6000 which redirects every pull request to the internal registry.
The endpoint being used is 10.5.0.1, as this is the default bridge interface address which will be routable from the QEMU VMs (127.0.0.1 IP will be pointing to the VM itself).
$ sudo -E talosctl cluster create --provisioner=qemu --registry-mirror '*'=http://10.5.0.1:6000 --install-image=ghcr.io/talos-systems/installer:v0.8.0
validating CIDR and reserving IPs
generating PKI and tokens
creating state directory in "/home/smira/.talos/clusters/talos-default"creating network talos-default
creating load balancer
creating dhcpd
creating master nodes
creating worker nodes
waiting for API
...
Note: --install-image should match the image which was copied into the internal registry in the previous step.
You can be verify that the cluster is air-gapped by inspecting the registry logs: docker logs -f registry-airgapped.
Closing Notes
Running in an air-gapped environment might require additional configuration changes, for example using custom settings for DNS and NTP servers.
When scaling this guide to the bare-metal environment, following Talos config snippet could be used as an equivalent of the --registry-mirror flag above:
Other implementations of Docker registry can be used in place of the Docker registry image used above to run the registry.
If required, auth can be configured for the internal registry (and custom TLS certificates if needed).
7.3 - Configuring Certificate Authorities
Appending the Certificate Authority
Put into each machine the PEM encoded certificate:
Create cluster like normal and see that metrics are now present on this port:
$ curl 127.0.0.1:11234/v1/metrics
# HELP container_blkio_io_service_bytes_recursive_bytes The blkio io service bytes recursive# TYPE container_blkio_io_service_bytes_recursive_bytes gaugecontainer_blkio_io_service_bytes_recursive_bytes{container_id="0677d73196f5f4be1d408aab1c4125cf9e6c458a4bea39e590ac779709ffbe14",device="/dev/dm-0",major="253",minor="0",namespace="k8s.io",op="Async"}0container_blkio_io_service_bytes_recursive_bytes{container_id="0677d73196f5f4be1d408aab1c4125cf9e6c458a4bea39e590ac779709ffbe14",device="/dev/dm-0",major="253",minor="0",namespace="k8s.io",op="Discard"}0...
...
7.5 - Configuring Corporate Proxies
Appending the Certificate Authority of MITM Proxies
Put into each machine the PEM encoded certificate:
The simplest way to deploy Talos is by ensuring that all the remote components of the system (talosctl, the control plane nodes, and worker nodes) all have layer 2 connectivity.
This is not always possible, however, so this page lays out the minimal network access that is required to configure and operate a talos cluster.
Note: These are the ports required for Talos specifically, and should be configured in addition to the ports required by kubernetes.
See the kubernetes docs for information on the ports used by kubernetes itself.
Ports marked with a * are not currently configurable, but that may change in the future.
Follow along here.
7.7 - Configuring Pull Through Cache
In this guide we will create a set of local caching Docker registry proxies to minimize local cluster startup time.
When running Talos locally, pulling images from Docker registries might take a significant amount of time.
We spin up local caching pass-through registries to cache images and configure a local Talos cluster to use those proxies.
A similar approach might be used to run Talos in production in air-gapped environments.
It can be also used to verify that all the images are available in local registries.
Video Walkthrough
To see a live demo of this writeup, see the video below:
Requirements
The follow are requirements for creating the set of caching proxies:
Docker 18.03 or greater
Local cluster requirements for either docker or QEMU.
Launch the Caching Docker Registry Proxies
Talos pulls from docker.io, k8s.gcr.io, gcr.io, ghcr.io and quay.io by default.
If your configuration is different, you might need to modify the commands below:
Note: Proxies are started as docker containers, and they’re automatically configured to start with Docker daemon.
Please note that quay.io proxy doesn’t support recent Docker image schema, so we run older registry image version (2.5).
As a registry container can only handle a single upstream Docker registry, we launch a container per upstream, each on its own
host port (5000, 5001, 5002, 5003 and 5004).
Using Caching Registries with QEMU Local Cluster
With a QEMU local cluster, a bridge interface is created on the host.
As registry containers expose their ports on the host, we can use bridge IP to direct proxy requests.
The Talos local cluster should now start pulling via caching registries.
This can be verified via registry logs, e.g. docker logs -f registry-docker.io.
The first time cluster boots, images are pulled and cached, so next cluster boot should be much faster.
Note: 10.5.0.1 is a bridge IP with default network (10.5.0.0/24), if using custom --cidr, value should be adjusted accordingly.
Using Caching Registries with docker Local Cluster
With a docker local cluster we can use docker bridge IP, default value for that IP is 172.17.0.1.
On Linux, the docker bridge address can be inspected with ip addr show docker0.
Note: Removing docker registry containers also removes the image cache.
So if you plan to use caching registries, keep the containers running.
7.8 - Configuring the Cluster Endpoint
In this section, we will step through the configuration of a Talos based Kubernetes cluster.
There are three major components we will configure:
apid and talosctl
the master nodes
the worker nodes
Talos enforces a high level of security by using mutual TLS for authentication and authorization.
We recommend that the configuration of Talos be performed by a cluster owner.
A cluster owner should be a person of authority within an organization, perhaps a director, manager, or senior member of a team.
They are responsible for storing the root CA, and distributing the PKI for authorized cluster administrators.
Recommended settings
Talos runs great out of the box, but if you tweak some minor settings it will make your life
a lot easier in the future.
This is not a requirement, but rather a document to explain some key settings.
Endpoint
To configure the talosctl endpoint, it is recommended you use a resolvable DNS name.
This way, if you decide to upgrade to a multi-controlplane cluster you only have to add the ip adres to the hostname configuration.
The configuration can either be done on a Loadbalancer, or simply trough DNS.
For example:
This is in the config file for the cluster e.g. init.yaml, controlplane.yaml and join.yaml.
for more details, please see: v1alpha1 endpoint configuration
If you have a DNS name as the endpoint, you can upgrade your talos cluster with multiple controlplanes in the future (if you don’t have a multi-controlplane setup from the start)
Using a DNS name generates the corresponding Certificates (Kubernetes and Talos) for the correct hostname.
7.9 - Customizing the Kernel
FROM scratch AS customizationCOPY --from=<custom kernel image> /lib/modules /lib/modules
FROM docker.io/andrewrynhard/installer:latestCOPY --from=<custom kernel image> /boot/vmlinuz /usr/install/vmlinuz
Note: You can use the --squash flag to create smaller images.
Now that we have a custom installer we can build Talos for the specific platform we wish to deploy to.
7.10 - Customizing the Root Filesystem
The installer image contains ONBUILD instructions that handle the following:
the decompression, and unpacking of the initramfs.xz
the unsquashing of the rootfs
the copying of new rootfs files
the squashing of the new rootfs
and the packing, and compression of the new initramfs.xz
When used as a base image, the installer will perform the above steps automatically with the requirement that a customization stage be defined in the Dockerfile.
For example, say we have an image that contains the contents of a library we wish to add to the Talos rootfs.
We need to define a stage with the name customization:
FROM scratch AS customizationCOPY --from=<name|index> <src> <dest>
Using a multi-stage Dockerfile we can define the customization stage and build FROM the installer image:
FROM scratch AS customizationCOPY --from=<name|index> <src> <dest>
FROM ghcr.io/talos-systems/installer:latest
When building the image, the customization stage will automatically be copied into the rootfs.
The customization stage is not limited to a single COPY instruction.
In fact, you can do whatever you would like in this stage, but keep in mind that everything in / will be copied into the rootfs.
Note: <dest> is the path relative to the rootfs that you wish to place the contents of <src>.
This will perform a rm -rf on the specified paths relative to the rootfs.
Note: RM must be a whitespace delimited list.
The resulting image can be used to:
generate an image for any of the supported providers
perform bare-metall installs
perform upgrades
We will step through common customizations in the remainder of this section.
7.11 - Managing PKI
Generating an Administrator Key Pair
In order to create a key pair, you will need the root CA.
Save the CA public key, and CA private key as ca.crt, and ca.key respectively.
Now, run the following commands to generate a certificate:
talosctl gen key --name admin
talosctl gen csr --key admin.key --ip 127.0.0.1
talosctl gen crt --ca ca --csr admin.csr --name admin
Now, base64 encode admin.crt, and admin.key:
cat admin.crt | base64
cat admin.key | base64
You can now set the crt and key fields in the talosconfig to the base64 encoded strings.
Renewing an Expired Administrator Certificate
In order to renew the certificate, you will need the root CA, and the admin private key.
The base64 encoded key can be found in any one of the control plane node’s configuration file.
Where it is exactly will depend on the specific version of the configuration file you are using.
Save the CA public key, CA private key, and admin private key as ca.crt, ca.key, and admin.key respectively.
Now, run the following commands to generate a certificate:
talosctl gen csr --key admin.key --ip 127.0.0.1
talosctl gen crt --ca ca --csr admin.csr --name admin
You should see admin.crt in your current directory.
Now, base64 encode admin.crt:
cat admin.crt | base64
You can now set the certificate in the talosconfig to the base64 encoded string.
7.12 - Resetting a Machine
From time to time, it may be beneficial to reset a Talos machine to its “original” state.
Bear in mind that this is a destructive action for the given machine.
Doing this means removing the machine from Kubernetes, Etcd (if applicable), and clears any data on the machine that would normally persist a reboot.
The API command for doing this is talosctl reset.
There are a couple of flags as part of this command:
Flags:
--graceful if true, attempt to cordon/drain node and leave etcd (if applicable)(default true) --reboot if true, reboot the node after resetting instead of shutting down
The graceful flag is especially important when considering HA vs. non-HA Talos clusters.
If the machine is part of an HA cluster, a normal, graceful reset should work just fine right out of the box as long as the cluster is in a good state.
However, if this is a single node cluster being used for testing purposes, a graceful reset is not an option since Etcd cannot be “left” if there is only a single member.
In this case, reset should be used with --graceful=false to skip performing checks that would normally block the reset.
7.13 - Storage
Talos is known to work with Rook and NFS.
Rook
We recommend at least Rook v1.5.
NFS
The NFS client is part of the kubelet image maintained by the Talos team.
This means that the version installed in your running kubelet is the version of NFS supported by Talos.
7.14 - Upgrading Kubernetes
Video Walkthrough
To see a live demo of this writeup, see the video below:
Kubeconfig
In order to edit the control plane, we will need a working kubectl config.
If you don’t already have one, you can get one by running:
talosctl --nodes <master node> kubeconfig
Automated Kubernetes Upgrade
To upgrade from Kubernetes v1.19.4 to v1.20.1 run:
$ talosctl --nodes <master node> upgrade-k8s --from 1.19.4 --to 1.20.1
patched kube-apiserver secrets for"service-account.key"updating pod-checkpointer grace period to "0m"sleeping 5m0s to let the pod-checkpointer self-checkpoint be updated
temporarily taking "kube-apiserver" out of pod-checkpointer control
updating daemonset "kube-apiserver" to version "1.20.1"updating daemonset "kube-controller-manager" to version "1.20.1"updating daemonset "kube-scheduler" to version "1.20.1"updating daemonset "kube-proxy" to version "1.20.1"updating pod-checkpointer grace period to "5m0s"
Manual Kubernetes Upgrade
Kubernetes can be upgraded manually as well by following the steps outlined below.
They are equivalent to the steps performed by the talosctl upgrade-k8s command.
Patching kube-apiserver Secrets
Copy secret value service-account.key from the secret kube-controller-manager in kube-system namespace to the
secret kube-apiserver.
After these changes, kube-apiserver secret should contain the following entries:
The Talos team now maintains an image for the kubelet that should be used starting with Kubernetes 1.20.
The image for this release is ghcr.io/talos-systems/kubelet:v1.20.1.
To explicitly set the image, we can use the official documentation.
For example:
Talos upgrades are effected by an API call.
The talosctl CLI utility will facilitate this, or you can use the automatic upgrade features provided by the talos controller manager.
Video Walkthrough
To see a live demo of this writeup, see the video below:
talosctl Upgrade
To manually upgrade a Talos node, you will specify the node’s IP address and the
installer container image for the version of Talos to which you wish to upgrade.
For instance, if your Talos node has the IP address 10.20.30.40 and you want
to install the official version v0.8.0, you would enter a command such
as:
There is an option to this command: --preserve, which can be used to explicitly tell Talos to either keep intact its ephemeral data or not.
In most cases, it is correct to just let Talos perform its default action.
However, if you are running a single-node control-plane, you will want to make sure that --preserve=true.
Talos Controller Manager
The Talos Controller Manager can coordinate upgrades of your nodes
automatically.
It ensures that a controllable number of nodes are being
upgraded at any given time.
It also applies an upgrade flow which allows you to classify some machines as
early adopters and others as getting only stable, tested versions.
To find out more about the controller manager and to get it installed and
configured, take a look at the GitHub page.
Please note that the controller manager is still in fairly early development.
More advanced features, such as time slot scheduling, will be coming in the
future.
Changelog and Upgrade Notes
In an effort to create more production ready clusters, Talos will now taint control plane nodes as unschedulable.
This means that any application you might have deployed must tolerate this taint if you intend on running the application on control plane nodes.
Another feature you will notice is the automatic uncordoning of nodes that have been upgraded.
Talos will now uncordon a node if the cordon was initiated by the upgrade process.
Talosctl
The talosctl CLI now requires an explicit set of nodes.
This can be configured with talos config nodes or set on the fly with talos --nodes.
Modified indicates the UNIX timestamp at which the file was last modified
TODO: unix timestamp or include proto’s Date type |
| is_dir | bool | | IsDir indicates that the file is a directory |
| error | string | | Error describes any error encountered while trying to read the file information. |
| link | string | | Link is filled with symlink target |
| relative_name | string | | RelativeName is the name of the file or directory relative to the RootPath |
GenerateConfigurationRequest
GenerateConfigurationRequest describes a request to generate a new configuration
on a node.
System_partitions_to_wipe lists specific system disk partitions to be reset (wiped). If system_partitions_to_wipe is empty, all the partitions are erased.
--cert-fingerprint strings list of server certificate fingeprints to accept (defaults to no check)
-f, --file string the filename of the updated configuration
-h, --help help for apply-config
-i, --insecure apply the config using the insecure (encrypted with no auth) maintenance service
--interactive apply the config using text based interactive mode
--no-reboot apply the config only after the reboot
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl bootstrap
Bootstrap the cluster
talosctl bootstrap [flags]
Options
-h, --help help for bootstrap
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl cluster create
Creates a local docker-based or QEMU-based kubernetes cluster
talosctl cluster create [flags]
Options
--arch string cluster architecture (default "amd64")
--cidr string CIDR of the cluster network (default "10.5.0.0/24")
--cni-bin-path strings search path for CNI binaries (VM only) (default [/home/user/.talos/cni/bin])
--cni-bundle-url string URL to download CNI bundle from (VM only) (default "https://github.com/siderolabs/talos/releases/download/v0.8.0-alpha.3/talosctl-cni-bundle-${ARCH}.tar.gz")
--cni-cache-dir string CNI cache directory path (VM only) (default "/home/user/.talos/cni/cache")
--cni-conf-dir string CNI config directory path (VM only) (default "/home/user/.talos/cni/conf.d")
--cpus string the share of CPUs as fraction (each container/VM) (default "2.0")
--crashdump print debug crashdump to stderr when cluster startup fails
--custom-cni-url string install custom CNI from the URL (Talos cluster)
--disk int default limit on disk size in MB (each VM) (default 6144)
--disk-image-path string disk image to use
--dns-domain string the dns domain to use for cluster (default "cluster.local")
--docker-host-ip string Host IP to forward exposed ports to (Docker provisioner only) (default "0.0.0.0")
--endpoint string use endpoint instead of provider defaults
-p, --exposed-ports string Comma-separated list of ports/protocols to expose on init node. Ex -p <hostPort>:<containerPort>/<protocol (tcp or udp)> (Docker provisioner only)
-h, --help help for create
--image string the image to use (default "ghcr.io/talos-systems/talos:latest")
--init-node-as-endpoint use init node as endpoint instead of any load balancer endpoint
--initrd-path string the uncompressed kernel image to use (default "_out/initramfs-${ARCH}.xz")
-i, --input-dir string location of pre-generated config files
--install-image string the installer image to use (default "ghcr.io/talos-systems/installer:latest")
--iso-path string the ISO path to use for the initial boot (VM only)
--kubernetes-version string desired kubernetes version to run (default "1.20.1")
--masters int the number of masters to create (default 1)
--memory int the limit on memory usage in MB (each container/VM) (default 2048)
--mtu int MTU of the cluster network (default 1500)
--nameservers strings list of nameservers to use (default [8.8.8.8,1.1.1.1])
--registry-insecure-skip-verify strings list of registry hostnames to skip TLS verification for
--registry-mirror strings list of registry mirrors to use in format: <registry host>=<mirror URL>
--skip-injecting-config skip injecting config from embedded metadata server, write config files to current directory
--skip-kubeconfig skip merging kubeconfig from the created cluster
--user-disk strings list of disks to create for each VM in format: <mount_point1>:<size1>:<mount_point2>:<size2>
--vmlinuz-path string the compressed kernel image to use (default "_out/vmlinuz-${ARCH}")
--wait wait for the cluster to be ready before returning (default true)
--wait-timeout duration timeout to wait for the cluster to be ready (default 20m0s)
--with-apply-config enable apply config when the VM is starting in maintenance mode
--with-bootloader enable bootloader to load kernel and initramfs from disk image after install (default true)
--with-debug enable debug in Talos config to send service logs to the console
--with-init-node create the cluster with an init node
--with-uefi enable UEFI on x86_64 architecture (always enabled for arm64)
--workers int the number of workers to create (default 1)
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
--name string the name of the cluster (default "talos-default")
-n, --nodes strings target the specified nodes
--provisioner string Talos cluster provisioner to use (default "docker")
--state string directory path to store cluster state (default "/home/user/.talos/clusters")
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl cluster - A collection of commands for managing local docker-based or firecracker-based clusters
talosctl cluster destroy
Destroys a local docker-based or firecracker-based kubernetes cluster
talosctl cluster destroy [flags]
Options
-h, --help help for destroy
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
--name string the name of the cluster (default "talos-default")
-n, --nodes strings target the specified nodes
--provisioner string Talos cluster provisioner to use (default "docker")
--state string directory path to store cluster state (default "/home/user/.talos/clusters")
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl cluster - A collection of commands for managing local docker-based or firecracker-based clusters
talosctl cluster show
Shows info about a local provisioned kubernetes cluster
talosctl cluster show [flags]
Options
-h, --help help for show
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
--name string the name of the cluster (default "talos-default")
-n, --nodes strings target the specified nodes
--provisioner string Talos cluster provisioner to use (default "docker")
--state string directory path to store cluster state (default "/home/user/.talos/clusters")
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl cluster - A collection of commands for managing local docker-based or firecracker-based clusters
talosctl cluster
A collection of commands for managing local docker-based or firecracker-based clusters
Options
-h, --help help for cluster
--name string the name of the cluster (default "talos-default")
--provisioner string Talos cluster provisioner to use (default "docker")
--state string directory path to store cluster state (default "/home/user/.talos/clusters")
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
Output shell completion code for the specified shell (bash or zsh)
Synopsis
Output shell completion code for the specified shell (bash or zsh).
The shell code must be evaluated to provide interactive
completion of talosctl commands. This can be done by sourcing it from
the .bash_profile.
Note for zsh users: [1] zsh completions are only supported in versions of zsh >= 5.2
talosctl completion SHELL [flags]
Examples
# Installing bash completion on macOS using homebrew
## If running Bash 3.2 included with macOS
brew install bash-completion
## or, if running Bash 4.1+
brew install bash-completion@2
## If talosctl is installed via homebrew, this should start working immediately.
## If you've installed via other means, you may need add the completion to your completion directory
talosctl completion bash > $(brew --prefix)/etc/bash_completion.d/talosctl
# Installing bash completion on Linux
## If bash-completion is not installed on Linux, please install the 'bash-completion' package
## via your distribution's package manager.
## Load the talosctl completion code for bash into the current shell
source <(talosctl completion bash)
## Write bash completion code to a file and source if from .bash_profile
talosctl completion bash > ~/.talos/completion.bash.inc
printf "
# talosctl shell completion
source '$HOME/.talos/completion.bash.inc'
" >> $HOME/.bash_profile
source $HOME/.bash_profile
# Load the talosctl completion code for zsh[1] into the current shell
source <(talosctl completion zsh)
# Set the talosctl completion code for zsh[1] to autoload on startup
talosctl completion zsh > "${fpath[1]}/_osctl"
Options
-h, --help help for completion
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl config add
Add a new context
talosctl config add <context> [flags]
Options
--ca string the path to the CA certificate
--crt string the path to the certificate
-h, --help help for add
--key string the path to the key
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
Merge additional contexts from another Talos config into the default config
Synopsis
Contexts with the same name are renamed while merging configs.
talosctl config merge <from> [flags]
Options
-h, --help help for merge
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
-h, --help help for containers
-k, --kubernetes use the k8s.io containerd namespace
-c, --use-cri use the CRI driver
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl copy
Copy data out from the node
Synopsis
Creates an .tar.gz archive at the node starting at and
streams it back to the client.
If ‘-’ is given for , archive is written to stdout.
Otherwise archive is extracted to which should be an empty directory or
talosctl creates a directory if doesn’t exist. Command doesn’t preserve
ownership and access mode for the files in extract mode, while streamed .tar archive
captures ownership and permission bits.
talosctl copy <src-path> -|<local-path> [flags]
Options
-h, --help help for copy
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl crashdump
Dump debug information about the cluster
talosctl crashdump [flags]
Options
--control-plane-nodes strings specify IPs of control plane nodes
-h, --help help for crashdump
--init-node string specify IPs of init node
--worker-nodes strings specify IPs of worker nodes
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl dashboard
Cluster dashboard with real-time metrics
Synopsis
Provide quick UI to navigate through node real-time metrics.
Keyboard shortcuts:
h, : switch one node to the left
l, : switch one node to the right
j, : scroll process list down
k, : scroll process list up
: scroll process list half page down
: scroll process list half page up
: scroll process list one page down
: scroll process list one page up
talosctl dashboard [flags]
Options
-h, --help help for dashboard
-d, --update-interval duration interval between updates (default 3s)
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl dmesg
Retrieve kernel logs
talosctl dmesg [flags]
Options
-f, --follow specify if the kernel log should be streamed
-h, --help help for dmesg
--tail specify if only new messages should be sent (makes sense only when combined with --follow)
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl etcd forfeit-leadership
Tell node to forfeit etcd cluster leadership
talosctl etcd forfeit-leadership [flags]
Options
-h, --help help for forfeit-leadership
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
--duration duration show events for the past duration interval (one second resolution, default is to show no history)
-h, --help help for events
--since string show events after the specified event ID (default is to show no history)
--tail int32 show specified number of past events (use -1 to show full history, default is to show no history)
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl gen ca
Generates a self-signed X.509 certificate authority
talosctl gen ca [flags]
Options
-h, --help help for ca
--hours int the hours from now on which the certificate validity period ends (default 87600)
--organization string X.509 distinguished name for the Organization
--rsa generate in RSA format
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl gen - Generate CAs, certificates, and private keys
talosctl gen config
Generates a set of configuration files for Talos cluster
Synopsis
The cluster endpoint is the URL for the Kubernetes API. If you decide to use
a control plane node, common in a single node control plane setup, use port 6443 as
this is the port that the API server binds to on every control plane node. For an HA
setup, usually involving a load balancer, use the IP and port of the load balancer.
talosctl gen config <cluster name> <cluster endpoint> [flags]
Options
--additional-sans strings additional Subject-Alt-Names for the APIServer certificate
--arch string the architecture of the cluster (default "amd64")
--dns-domain string the dns domain to use for cluster (default "cluster.local")
-h, --help help for config
--install-disk string the disk to install to (default "/dev/sda")
--install-image string the image used to perform an installation (default "ghcr.io/talos-systems/installer:latest")
--kubernetes-version string desired kubernetes version to run
-o, --output-dir string destination to output generated files
-p, --persist the desired persist value for configs (default true)
--registry-mirror strings list of registry mirrors to use in format: <registry host>=<mirror URL>
--version string the desired machine config version to generate (default "v1alpha1")
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl gen - Generate CAs, certificates, and private keys
talosctl gen crt
Generates an X.509 Ed25519 certificate
talosctl gen crt [flags]
Options
--ca string path to the PEM encoded CERTIFICATE
--csr string path to the PEM encoded CERTIFICATE REQUEST
-h, --help help for crt
--hours int the hours from now on which the certificate validity period ends (default 24)
--name string the basename of the generated file
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl gen - Generate CAs, certificates, and private keys
talosctl gen csr
Generates a CSR using an Ed25519 private key
talosctl gen csr [flags]
Options
-h, --help help for csr
--ip string generate the certificate for this IP address
--key string path to the PEM encoded EC or RSA PRIVATE KEY
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl gen - Generate CAs, certificates, and private keys
talosctl gen key
Generates an Ed25519 private key
talosctl gen key [flags]
Options
-h, --help help for key
--name string the basename of the generated file
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl gen - Generate CAs, certificates, and private keys
talosctl gen keypair
Generates an X.509 Ed25519 key pair
talosctl gen keypair [flags]
Options
-h, --help help for keypair
--ip string generate the certificate for this IP address
--organization string X.509 distinguished name for the Organization
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl gen - Generate CAs, certificates, and private keys
talosctl gen
Generate CAs, certificates, and private keys
Options
-h, --help help for gen
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl gen ca - Generates a self-signed X.509 certificate authority
talosctl gen config - Generates a set of configuration files for Talos cluster
--control-plane-nodes strings specify IPs of control plane nodes
-h, --help help for health
--init-node string specify IPs of init node
--k8s-endpoint string use endpoint instead of kubeconfig default
--run-e2e run Kubernetes e2e test
--server run server-side check (default true)
--wait-timeout duration timeout to wait for the cluster to be ready (default 20m0s)
--worker-nodes strings specify IPs of worker nodes
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl images
List the default images used by Talos
talosctl images [flags]
Options
-h, --help help for images
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl interfaces
List network interfaces
talosctl interfaces [flags]
Options
-h, --help help for interfaces
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl kubeconfig
Download the admin kubeconfig from the node
Synopsis
Download the admin kubeconfig from the node.
If merge flag is defined, config will be merged with ~/.kube/config or [local-path] if specified.
Otherwise kubeconfig will be written to PWD or [local-path] if specified.
talosctl kubeconfig [local-path] [flags]
Options
-f, --force Force overwrite of kubeconfig if already present, force overwrite on kubeconfig merge
--force-context-name string Force context name for kubeconfig merge
-h, --help help for kubeconfig
-m, --merge Merge with existing kubeconfig (default true)
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl list
Retrieve a directory listing
talosctl list [path] [flags]
Options
-d, --depth int32 maximum recursion depth
-h, --help help for list
-H, --humanize humanize size and time in the output
-l, --long display additional file details
-r, --recurse recurse into subdirectories
-t, --type strings filter by specified types:
f regular file
d directory
l, L symbolic link
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl logs
Retrieve logs for a service
talosctl logs <service name> [flags]
Options
-f, --follow specify if the logs should be streamed
-h, --help help for logs
-k, --kubernetes use the k8s.io containerd namespace
--tail int32 lines of log file to display (default is to show from the beginning) (default -1)
-c, --use-cri use the CRI driver
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl memory
Show memory usage
talosctl memory [flags]
Options
-h, --help help for memory
-v, --verbose display extended memory statistics
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl mounts
List mounts
talosctl mounts [flags]
Options
-h, --help help for mounts
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl processes
List running processes
talosctl processes [flags]
Options
-h, --help help for processes
-s, --sort string Column to sort output by. [rss|cpu] (default "rss")
-w, --watch Stream running processes
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl read
Read a file on the machine
talosctl read <path> [flags]
Options
-h, --help help for read
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl reboot
Reboot a node
talosctl reboot [flags]
Options
-h, --help help for reboot
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl recover
Recover a control plane
talosctl recover [flags]
Options
-h, --help help for recover
-s, --source string The data source for restoring the control plane manifests from (valid options are "apiserver" and "etcd") (default "apiserver")
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl reset
Reset a node
talosctl reset [flags]
Options
--graceful if true, attempt to cordon/drain node and leave etcd (if applicable) (default true)
-h, --help help for reset
--reboot if true, reboot the node after resetting instead of shutting down
--system-labels-to-wipe strings if set, just wipe selected system disk partitions by label but keep other partitions intact
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl restart
Restart a process
talosctl restart <id> [flags]
Options
-h, --help help for restart
-k, --kubernetes use the k8s.io containerd namespace
-c, --use-cri use the CRI driver
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl rollback
Rollback a node to the previous installation
talosctl rollback [flags]
Options
-h, --help help for rollback
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl routes
List network routes
talosctl routes [flags]
Options
-h, --help help for routes
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl service
Retrieve the state of a service (or all services), control service state
Synopsis
Service control command. If run without arguments, lists all the services and their state.
If service ID is specified, default action ‘status’ is executed which shows status of a single list service.
With actions ‘start’, ‘stop’, ‘restart’, service state is updated respectively.
talosctl service [<id> [start|stop|restart|status]] [flags]
Options
-h, --help help for service
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl shutdown
Shutdown a node
talosctl shutdown [flags]
Options
-h, --help help for shutdown
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl stats
Get container stats
talosctl stats [flags]
Options
-h, --help help for stats
-k, --kubernetes use the k8s.io containerd namespace
-c, --use-cri use the CRI driver
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl time
Gets current server time
talosctl time [--check server] [flags]
Options
-c, --check string checks server time against specified ntp server
-h, --help help for time
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl upgrade
Upgrade Talos on the target node
talosctl upgrade [flags]
Options
-h, --help help for upgrade
-i, --image string the container image to use for performing the install
-p, --preserve preserve data
-s, --stage stage the upgrade to perform it after a reboot
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl upgrade-k8s
Upgrade Kubernetes control plane in the Talos cluster.
Synopsis
Command runs upgrade of Kubernetes control plane components between specified versions. Pod-checkpointer is handled in a special way to speed up kube-apisever upgrades.
talosctl upgrade-k8s [flags]
Options
--arch string the cluster architecture (default "amd64")
--endpoint string the cluster control plane endpoint
--from string the Kubernetes control plane version to upgrade from
-h, --help help for upgrade-k8s
--to string the Kubernetes control plane version to upgrade to (default "1.20.1")
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
-a, --all write counts for all files, not just directories
-d, --depth int32 maximum recursion depth
-h, --help help for usage
-H, --humanize humanize size and time in the output
-t, --threshold int threshold exclude entries smaller than SIZE if positive, or entries greater than SIZE if negative
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl validate
Validate config
talosctl validate [flags]
Options
-c, --config string the path of the config file
-h, --help help for validate
-m, --mode string the mode to validate the config for (valid values are metal, cloud, and container)
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl version
Prints the version
talosctl version [flags]
Options
--client Print client version only
-h, --help help for version
--short Print the short version
Options inherited from parent commands
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
SEE ALSO
talosctl - A CLI for out-of-band management of Kubernetes nodes created by Talos
talosctl
A CLI for out-of-band management of Kubernetes nodes created by Talos
Options
--context string Context to be used in command
-e, --endpoints strings override default endpoints in Talos configuration
-h, --help help for talosctl
-n, --nodes strings target the specified nodes
--talosconfig string The path to the Talos configuration file (default "/home/user/.talos/config")
type: controlplane
# InstallConfig represents the installation options for preparing a node.install:
disk: /dev/sda # The disk used for installations.# Allows for supplying extra kernel args via the bootloader.extraKernelArgs:
- console=ttyS1
- panic=10
image: ghcr.io/talos-systems/installer:latest # Allows for supplying the image used to perform the installation.bootloader: true# Indicates if a bootloader should be installed.wipe: false# Indicates if the installation disk should be wiped at installation time.
typestring
Defines the role of the machine within the cluster.
Init
Init node type designates the first control plane node to come up.
You can think of it like a bootstrap node.
This node will perform the initial steps to bootstrap the cluster – generation of TLS assets, starting of the control plane, etc.
Control Plane
Control Plane node type designates the node as a control plane member.
This means it will host etcd along with the Kubernetes master components such as API Server, Controller Manager, Scheduler.
Worker
Worker node type designates the node as a worker node.
This means it will be an available compute node for scheduling workloads.
Valid values:
init
controlplane
join
tokenstring
The token is used by a machine to join the PKI of the cluster.
Using this token, a machine will create a certificate signing request (CSR), and request a certificate that will be used as its’ identity.
Warning: It is important to ensure that this token is correct since a machine’s certificate has a short TTL by default.
Examples:
token: 328hom.uqjzh6jnn2eie9oi
caPEMEncodedCertificateAndKey
The root certificate authority of the PKI.
It is composed of a base64 encoded crt and key.
Extra certificate subject alternative names for the machine’s certificate.
By default, all non-loopback interface IPs are automatically added to the certificate’s SANs.
Used to provide additional options to the kubelet.
Examples:
kubelet:
image: ghcr.io/talos-systems/kubelet:v1.20.1 # The `image` field is an optional reference to an alternative kubelet image.# The `extraArgs` field is used to provide additional flags to the kubelet.extraArgs:
feature-gates: ServerSideApply=true
# # The `extraMounts` field is used to add additional mounts to the kubelet container.# extraMounts:# - destination: /var/lib/example# type: bind# source: /var/lib/example# options:# - rshared# - rw
Provides machine specific network configuration options.
Examples:
network:
hostname: worker-1 # Used to statically set the hostname for the machine.# `interfaces` is used to define the network interface configuration.interfaces:
- interface: eth0 # The interface name.cidr: 192.168.2.0/24 # Assigns a static IP address to the interface.# A list of routes associated with the interface.routes:
- network: 0.0.0.0/0 # The route's network.gateway: 192.168.2.1# The route's gateway.metric: 1024# The optional metric for the route.mtu: 1500# The interface's MTU.# # Bond specific options.# bond:# # The interfaces that make up the bond.# interfaces:# - eth0# - eth1# mode: 802.3ad # A bond option.# lacpRate: fast # A bond option.# # Indicates if DHCP should be used to configure the interface.# dhcp: true# # DHCP specific options.# dhcpOptions:# routeMetric: 1024 # The priority of all routes received via DHCP.# Used to statically set the nameservers for the machine.nameservers:
- 9.8.7.6 - 8.7.6.5# # Allows for extra entries to be added to the `/etc/hosts` file# extraHostEntries:# - ip: 192.168.1.100 # The IP of the host.# # The host alias.# aliases:# - example# - example.domain.tld
Used to partition, format and mount additional disks.
Since the rootfs is read only with the exception of /var, mounts are only valid if they are under /var.
Note that the partitioning and formating is done only once, if and only if no existing partitions are found.
If size: is omitted, the partition is sized to occupy the full disk.
Note: size is in units of bytes.
Examples:
disks:
- device: /dev/sdb # The name of the disk to use.# A list of partitions to create on the disk.partitions:
- mountpoint: /var/mnt/extra # Where to mount the partition.# # The size of partition: either bytes or human readable representation. If `size:` is omitted, the partition is sized to occupy the full disk.# # Human readable representation.# size: 100 MB# # Precise value in bytes.# size: 1073741824
install:
disk: /dev/sda # The disk used for installations.# Allows for supplying extra kernel args via the bootloader.extraKernelArgs:
- console=ttyS1
- panic=10
image: ghcr.io/talos-systems/installer:latest # Allows for supplying the image used to perform the installation.bootloader: true# Indicates if a bootloader should be installed.wipe: false# Indicates if the installation disk should be wiped at installation time.
Allows the addition of user specified files.
The value of op can be create, overwrite, or append.
In the case of create, path must not exist.
In the case of overwrite, and append, path must be a valid file.
If an op value of append is used, the existing file will be appended.
Note that the file contents are not required to be base64 encoded.
Note: The specified path is relative to /var.
Examples:
files:
- content: '...'# The contents of the file.permissions: 0o666# The file's permissions in octal.path: /tmp/file.txt # The path of the file.op: append # The operation to use
envEnv
The env field allows for the addition of environment variables.
All environment variables are set on PID 1 in addition to every service.
Valid values:
GRPC_GO_LOG_VERBOSITY_LEVEL
GRPC_GO_LOG_SEVERITY_LEVEL
http_proxy
https_proxy
no_proxy
Examples:
env:
GRPC_GO_LOG_SEVERITY_LEVEL: info
GRPC_GO_LOG_VERBOSITY_LEVEL: "99"https_proxy: http://SERVER:PORT/
time:
disabled: false# Indicates if the time service is disabled for the machine.# Specifies time (NTP) servers to use for setting the system time.servers:
- time.cloudflare.com
Used to configure the machine’s container image registry mirrors.
Automatically generates matching CRI configuration for registry mirrors.
The mirrors section allows to redirect requests for images to non-default registry,
which might be local registry or caching mirror.
The config section provides a way to authenticate to the registry with TLS client
identity, provide registry CA, or authentication information.
Authentication information has same meaning with the corresponding field in .docker/config.json.
registries:
# Specifies mirror configuration for each registry.mirrors:
docker.io:
# List of endpoints (URLs) for registry mirrors to use.endpoints:
- https://registry.local
# Specifies TLS & auth configuration for HTTPS image registries.config:
registry.local:
# The TLS configuration for the registry.tls:
# Enable mutual TLS authentication with the registry.clientIdentity:
crt: TFMwdExTMUNSVWRKVGlCRFJWSlVTVVpKUTBGVVJTMHRMUzB0Q2sxSlNVSklla05DTUhGLi4u
key: TFMwdExTMUNSVWRKVGlCRlJESTFOVEU1SUZCU1NWWkJWRVVnUzBWWkxTMHRMUzBLVFVNLi4u
# The auth configuration for this registry.auth:
username: username # Optional registry authentication.password: password # Optional registry authentication.
ClusterConfig
ClusterConfig represents the cluster-wide config values.
# ControlPlaneConfig represents the control plane configuration options.controlPlane:
endpoint: https://1.2.3.4 # Endpoint is the canonical controlplane endpoint, which can be an IP address or a DNS hostname.localAPIServerPort: 443# The port that the API server listens on internally.clusterName: talos.local
# ClusterNetworkConfig represents kube networking configuration options.network:
# The CNI used.cni:
name: flannel # Name of CNI to use.dnsDomain: cluster.local # The domain used by Kubernetes DNS.# The pod subnet CIDR.podSubnets:
- 10.244.0.0/16
# The service subnet CIDR.serviceSubnets:
- 10.96.0.0/12
Provides control plane specific configuration options.
Examples:
controlPlane:
endpoint: https://1.2.3.4 # Endpoint is the canonical controlplane endpoint, which can be an IP address or a DNS hostname.localAPIServerPort: 443# The port that the API server listens on internally.
Provides cluster specific network configuration options.
Examples:
network:
# The CNI used.cni:
name: flannel # Name of CNI to use.dnsDomain: cluster.local # The domain used by Kubernetes DNS.# The pod subnet CIDR.podSubnets:
- 10.244.0.0/16
# The service subnet CIDR.serviceSubnets:
- 10.96.0.0/12
apiServer:
image: k8s.gcr.io/kube-apiserver-amd64:v1.20.1 # The container image used in the API server manifest.# Extra arguments to supply to the API server.extraArgs:
feature-gates: ServerSideApply=true
http2-max-streams-per-connection: "32"# Extra certificate subject alternative names for the API server's certificate.certSANs:
- 1.2.3.4 - 4.5.6.7
Controller manager server specific configuration options.
Examples:
controllerManager:
image: k8s.gcr.io/kube-controller-manager-amd64:v1.20.1 # The container image used in the controller manager manifest.# Extra arguments to supply to the controller manager.extraArgs:
feature-gates: ServerSideApply=true
proxy:
image: k8s.gcr.io/kube-proxy-amd64:v1.20.1 # The container image used in the kube-proxy manifest.mode: ipvs # proxy mode of kube-proxy.# Extra arguments to supply to kube-proxy.extraArgs:
proxy-mode: iptables
scheduler:
image: k8s.gcr.io/kube-scheduler-amd64:v1.20.1 # The container image used in the scheduler manifest.# Extra arguments to supply to the scheduler.extraArgs:
feature-gates: AllBeta=true
etcd:
image: gcr.io/etcd-development/etcd:v3.4.14 # The container image used to create the etcd service.# The `ca` is the root certificate authority of the PKI.ca:
crt: TFMwdExTMUNSVWRKVGlCRFJWSlVTVVpKUTBGVVJTMHRMUzB0Q2sxSlNVSklla05DTUhGLi4u
key: TFMwdExTMUNSVWRKVGlCRlJESTFOVEU1SUZCU1NWWkJWRVVnUzBWWkxTMHRMUzBLVFVNLi4u
# Extra arguments to supply to etcd.extraArgs:
election-timeout: "5000"
image: ghcr.io/talos-systems/kubelet:v1.20.1 # The `image` field is an optional reference to an alternative kubelet image.# The `extraArgs` field is used to provide additional flags to the kubelet.extraArgs:
feature-gates: ServerSideApply=true
# # The `extraMounts` field is used to add additional mounts to the kubelet container.# extraMounts:# - destination: /var/lib/example# type: bind# source: /var/lib/example# options:# - rshared# - rw
imagestring
The image field is an optional reference to an alternative kubelet image.
Examples:
image: ghcr.io/talos-systems/kubelet:v1.20.1
extraArgsmap[string]string
The extraArgs field is used to provide additional flags to the kubelet.
Examples:
extraArgs:
key: value
extraMounts[]Mount
The extraMounts field is used to add additional mounts to the kubelet container.
hostname: worker-1 # Used to statically set the hostname for the machine.# `interfaces` is used to define the network interface configuration.interfaces:
- interface: eth0 # The interface name.cidr: 192.168.2.0/24 # Assigns a static IP address to the interface.# A list of routes associated with the interface.routes:
- network: 0.0.0.0/0 # The route's network.gateway: 192.168.2.1# The route's gateway.metric: 1024# The optional metric for the route.mtu: 1500# The interface's MTU.# # Bond specific options.# bond:# # The interfaces that make up the bond.# interfaces:# - eth0# - eth1# mode: 802.3ad # A bond option.# lacpRate: fast # A bond option.# # Indicates if DHCP should be used to configure the interface.# dhcp: true# # DHCP specific options.# dhcpOptions:# routeMetric: 1024 # The priority of all routes received via DHCP.# Used to statically set the nameservers for the machine.nameservers:
- 9.8.7.6 - 8.7.6.5# # Allows for extra entries to be added to the `/etc/hosts` file# extraHostEntries:# - ip: 192.168.1.100 # The IP of the host.# # The host alias.# aliases:# - example# - example.domain.tld
hostnamestring
Used to statically set the hostname for the machine.
interfaces is used to define the network interface configuration.
By default all network interfaces will attempt a DHCP discovery.
This can be further tuned through this configuration parameter.
Examples:
interfaces:
- interface: eth0 # The interface name.cidr: 192.168.2.0/24 # Assigns a static IP address to the interface.# A list of routes associated with the interface.routes:
- network: 0.0.0.0/0 # The route's network.gateway: 192.168.2.1# The route's gateway.metric: 1024# The optional metric for the route.mtu: 1500# The interface's MTU.# # Bond specific options.# bond:# # The interfaces that make up the bond.# interfaces:# - eth0# - eth1# mode: 802.3ad # A bond option.# lacpRate: fast # A bond option.# # Indicates if DHCP should be used to configure the interface.# dhcp: true# # DHCP specific options.# dhcpOptions:# routeMetric: 1024 # The priority of all routes received via DHCP.
nameservers[]string
Used to statically set the nameservers for the machine.
Defaults to 1.1.1.1 and 8.8.8.8
disk: /dev/sda # The disk used for installations.# Allows for supplying extra kernel args via the bootloader.extraKernelArgs:
- console=ttyS1
- panic=10
image: ghcr.io/talos-systems/installer:latest # Allows for supplying the image used to perform the installation.bootloader: true# Indicates if a bootloader should be installed.wipe: false# Indicates if the installation disk should be wiped at installation time.
diskstring
The disk used for installations.
Examples:
disk: /dev/sda
disk: /dev/nvme0
extraKernelArgs[]string
Allows for supplying extra kernel args via the bootloader.
disabled: false# Indicates if the time service is disabled for the machine.# Specifies time (NTP) servers to use for setting the system time.servers:
- time.cloudflare.com
disabledbool
Indicates if the time service is disabled for the machine.
Defaults to false.
servers[]string
Specifies time (NTP) servers to use for setting the system time.
Defaults to pool.ntp.org
This parameter only supports a single time server.
RegistriesConfig
RegistriesConfig represents the image pull options.
# Specifies mirror configuration for each registry.mirrors:
docker.io:
# List of endpoints (URLs) for registry mirrors to use.endpoints:
- https://registry.local
# Specifies TLS & auth configuration for HTTPS image registries.config:
registry.local:
# The TLS configuration for the registry.tls:
# Enable mutual TLS authentication with the registry.clientIdentity:
crt: TFMwdExTMUNSVWRKVGlCRFJWSlVTVVpKUTBGVVJTMHRMUzB0Q2sxSlNVSklla05DTUhGLi4u
key: TFMwdExTMUNSVWRKVGlCRlJESTFOVEU1SUZCU1NWWkJWRVVnUzBWWkxTMHRMUzBLVFVNLi4u
# The auth configuration for this registry.auth:
username: username # Optional registry authentication.password: password # Optional registry authentication.
Specifies mirror configuration for each registry.
This setting allows to use local pull-through caching registires,
air-gapped installations, etc.
Registry name is the first segment of image identifier, with ‘docker.io’
being default one.
To catch any registry names not specified explicitly, use ‘*’.
Examples:
mirrors:
ghcr.io:
# List of endpoints (URLs) for registry mirrors to use.endpoints:
- https://registry.insecure
- https://ghcr.io/v2/
endpoint: https://1.2.3.4 # Endpoint is the canonical controlplane endpoint, which can be an IP address or a DNS hostname.localAPIServerPort: 443# The port that the API server listens on internally.
Endpoint is the canonical controlplane endpoint, which can be an IP address or a DNS hostname.
It is single-valued, and may optionally include a port number.
Examples:
endpoint: https://1.2.3.4:6443
endpoint: https://cluster1.internal:6443
localAPIServerPortint
The port that the API server listens on internally.
This may be different than the port portion listed in the endpoint field above.
The default is 6443.
APIServerConfig
APIServerConfig represents the kube apiserver configuration options.
image: k8s.gcr.io/kube-apiserver-amd64:v1.20.1 # The container image used in the API server manifest.# Extra arguments to supply to the API server.extraArgs:
feature-gates: ServerSideApply=true
http2-max-streams-per-connection: "32"# Extra certificate subject alternative names for the API server's certificate.certSANs:
- 1.2.3.4 - 4.5.6.7
imagestring
The container image used in the API server manifest.
Examples:
image: k8s.gcr.io/kube-apiserver-amd64:v1.20.1
extraArgsmap[string]string
Extra arguments to supply to the API server.
certSANs[]string
Extra certificate subject alternative names for the API server’s certificate.
ControllerManagerConfig
ControllerManagerConfig represents the kube controller manager configuration options.
image: k8s.gcr.io/kube-controller-manager-amd64:v1.20.1 # The container image used in the controller manager manifest.# Extra arguments to supply to the controller manager.extraArgs:
feature-gates: ServerSideApply=true
imagestring
The container image used in the controller manager manifest.
image: k8s.gcr.io/kube-proxy-amd64:v1.20.1 # The container image used in the kube-proxy manifest.mode: ipvs # proxy mode of kube-proxy.# Extra arguments to supply to kube-proxy.extraArgs:
proxy-mode: iptables
imagestring
The container image used in the kube-proxy manifest.
Examples:
image: k8s.gcr.io/kube-proxy-amd64:v1.20.1
modestring
proxy mode of kube-proxy.
The default is ‘iptables’.
extraArgsmap[string]string
Extra arguments to supply to kube-proxy.
SchedulerConfig
SchedulerConfig represents the kube scheduler configuration options.
image: k8s.gcr.io/kube-scheduler-amd64:v1.20.1 # The container image used in the scheduler manifest.# Extra arguments to supply to the scheduler.extraArgs:
feature-gates: AllBeta=true
imagestring
The container image used in the scheduler manifest.
Examples:
image: k8s.gcr.io/kube-scheduler-amd64:v1.20.1
extraArgsmap[string]string
Extra arguments to supply to the scheduler.
EtcdConfig
EtcdConfig represents the etcd configuration options.
image: gcr.io/etcd-development/etcd:v3.4.14 # The container image used to create the etcd service.# The `ca` is the root certificate authority of the PKI.ca:
crt: TFMwdExTMUNSVWRKVGlCRFJWSlVTVVpKUTBGVVJTMHRMUzB0Q2sxSlNVSklla05DTUhGLi4u
key: TFMwdExTMUNSVWRKVGlCRlJESTFOVEU1SUZCU1NWWkJWRVVnUzBWWkxTMHRMUzBLVFVNLi4u
# Extra arguments to supply to etcd.extraArgs:
election-timeout: "5000"
imagestring
The container image used to create the etcd service.
Examples:
image: gcr.io/etcd-development/etcd:v3.4.14
caPEMEncodedCertificateAndKey
The ca is the root certificate authority of the PKI.
It is composed of a base64 encoded crt and key.
# The CNI used.cni:
name: flannel # Name of CNI to use.dnsDomain: cluster.local # The domain used by Kubernetes DNS.# The pod subnet CIDR.podSubnets:
- 10.244.0.0/16
# The service subnet CIDR.serviceSubnets:
- 10.96.0.0/12
The CNI used.
Composed of “name” and “url”.
The “name” key only supports options of “flannel” or “custom”.
URLs is only used if name is equal to “custom”.
URLs should point to the set of YAML files to be deployed.
An empty struct or any other name will default to bootkube’s flannel.
Examples:
cni:
name: custom # Name of CNI to use.# URLs containing manifests to apply for the CNI.urls:
- https://raw.githubusercontent.com/cilium/cilium/v1.8/install/kubernetes/quick-install.yaml
dnsDomainstring
The domain used by Kubernetes DNS.
The default is cluster.local
Examples:
dnsDomain: cluser.local
podSubnets[]string
The pod subnet CIDR.
Examples:
podSubnets:
- 10.244.0.0/16
serviceSubnets[]string
The service subnet CIDR.
Examples:
serviceSubnets:
- 10.96.0.0/12
CNIConfig
CNIConfig represents the CNI configuration options.
name: custom # Name of CNI to use.# URLs containing manifests to apply for the CNI.urls:
- https://raw.githubusercontent.com/cilium/cilium/v1.8/install/kubernetes/quick-install.yaml
Admin kubeconfig certificate lifetime (default is 1 year).
Field format accepts any Go time.Duration format (‘1h’ for one hour, ‘10m’ for ten minutes).
MachineDisk
MachineDisk represents the options available for partitioning, formatting, and
mounting extra disks.
- device: /dev/sdb # The name of the disk to use.# A list of partitions to create on the disk.partitions:
- mountpoint: /var/mnt/extra # Where to mount the partition.# # The size of partition: either bytes or human readable representation. If `size:` is omitted, the partition is sized to occupy the full disk.# # Human readable representation.# size: 100 MB# # Precise value in bytes.# size: 1073741824
- content: '...'# The contents of the file.permissions: 0o666# The file's permissions in octal.path: /tmp/file.txt # The path of the file.op: append # The operation to use
- interface: eth0 # The interface name.cidr: 192.168.2.0/24 # Assigns a static IP address to the interface.# A list of routes associated with the interface.routes:
- network: 0.0.0.0/0 # The route's network.gateway: 192.168.2.1# The route's gateway.metric: 1024# The optional metric for the route.mtu: 1500# The interface's MTU.# # Bond specific options.# bond:# # The interfaces that make up the bond.# interfaces:# - eth0# - eth1# mode: 802.3ad # A bond option.# lacpRate: fast # A bond option.# # Indicates if DHCP should be used to configure the interface.# dhcp: true# # DHCP specific options.# dhcpOptions:# routeMetric: 1024 # The priority of all routes received via DHCP.
interfacestring
The interface name.
Examples:
interface: eth0
cidrstring
Assigns a static IP address to the interface.
This should be in proper CIDR notation.
Note: This option is mutually exclusive with DHCP option.
The interface’s MTU.
If used in combination with DHCP, this will override any MTU settings returned from DHCP server.
dhcpbool
Indicates if DHCP should be used to configure the interface.
The following DHCP options are supported:
OptionClasslessStaticRoute
OptionDomainNameServer
OptionDNSDomainSearchList
OptionHostName
Note: This option is mutually exclusive with CIDR.
Note: To configure an interface with only IPv6 SLAAC addressing, CIDR should be set to "" and DHCP to false
in order for Talos to skip configuration of addresses.
All other options will still apply.
Examples:
dhcp: true
ignorebool
Indicates if the interface should be ignored (skips configuration).
dummybool
Indicates if the interface is a dummy interface.
dummy is used to specify that this interface should be a virtual-only, dummy interface.
ghcr.io:
# List of endpoints (URLs) for registry mirrors to use.endpoints:
- https://registry.insecure
- https://ghcr.io/v2/
endpoints[]string
List of endpoints (URLs) for registry mirrors to use.
Endpoint configures HTTP/HTTPS access mode, host name,
port and path (if path is not set, it defaults to /v2).
RegistryConfig
RegistryConfig specifies auth & TLS config per registry.
CA registry certificate to add the list of trusted certificates.
Certificate should be base64-encoded.
insecureSkipVerifybool
Skip TLS server certificate verification (not recommended).
8.4 - Platform
Metal
Below is a image to visualize the process of bootstrapping nodes.
9 - Learn More
9.1 - Philosophy
Distributed
Talos is intended to be operated in a distributed manner.
That is, it is built for a high-availability dataplane first.
Its etcd cluster is built in an ad-hoc manner, with each appointed node joining on its own directive (with proper security validations enforced, of course).
Like as kubernetes itself, workloads are intended to be distributed across any number of compute nodes.
There should be no single points of failure, and the level of required coordination is as low as each platform allows.
Immutable
Talos takes immutability very seriously.
Talos itself, even when installed on a disk, always runs from a SquashFS image, meaning that even if a directory is mounted to be writable, the image itself is never modified.
All images are signed and delivered as single, versioned files.
We can always run integrity checks on our image to verify that it has not been modified.
While Talos does allow a few, highly-controlled write points to the filesystem, we strive to make them as non-unique and non-critical as possible.
In fact, we call the writable partition the “ephemeral” partition precisely because we want to make sure none of us ever uses it for unique, non-replicated, non-recreatable data.
Thus, if all else fails, we can always wipe the disk and get back up and running.
Minimal
We are always trying to reduce and keep small Talos’ footprint.
Because nearly the entire OS is built from scratch in Go, we are already
starting out in a good position.
We have no shell.
We have no SSH.
We have none of the GNU utilities, not even a rollup tool such as busybox.
Everything which is included in Talos is there because it is necessary, and
nothing is included which isn’t.
As a result, the OS right now produces a SquashFS image size of less than 80 MB.
Ephemeral
Everything Talos writes to its disk is either replicated or reconstructable.
Since the controlplane is high availability, the loss of any node will cause
neither service disruption nor loss of data.
No writes are even allowed to the vast majority of the filesystem.
We even call the writable partition “ephemeral” to keep this idea always in
focus.
Secure
Talos has always been designed with security in mind.
With its immutability, its minimalism, its signing, and its componenture, we are
able to simply bypass huge classes of vulnerabilities.
Moreover, because of the way we have designed Talos, we are able to take
advantage of a number of additional settings, such as the recommendations of the Kernel Self Protection Project (kspp) and the complete disablement of dynamic modules.
There are no passwords in Talos.
All networked communication is encrypted and key-authenticated.
The Talos certificates are short-lived and automatically-rotating.
Kubernetes is always constructed with its own separate PKI structure which is
enforced.
Declarative
Everything which can be configured in Talos is done so through a single YAML
manifest.
There is no scripting and no procedural steps.
Everything is defined by the one declarative YAML file.
This configuration includes that of both Talos itself and the Kubernetes which
it forms.
This is achievable because Talos is tightly focused to do one thing: run
kubernetes, in the easiest, most secure, most reliable way it can.
9.2 - Concepts
Platform
Mode
Endpoint
Node
9.3 - Architecture
Talos is designed to be atomic in deployment and modular in composition.
It is atomic in the sense that the entirety of Talos is distributed as a
single, self-contained image, which is versioned, signed, and immutable.
It is modular in the sense that it is composed of many separate components
which have clearly defined gRPC interfaces which facilitate internal flexibility
and external operational guarantees.
There are a number of components which comprise Talos.
All of the main Talos components communicate with each other by gRPC, through a socket on the local machine.
This imposes a clear separation of concerns and ensures that changes over time which affect the interoperation of components are a part of the public git record.
The benefit is that each component may be iterated and changed as its needs dictate, so long as the external API is controlled.
This is a key component in reducing coupling and maintaining modularity.
The File System
One of the more unique design decisions in Talos is the layout of the root file system.
There are three “layers” to the Talos root file system.
At its’ core the rootfs is a read-only squashfs.
The squashfs is then mounted as a loop device into memory.
This provides Talos with an immutable base.
The next layer is a set of tmpfs file systems for runtime specific needs.
Aside from the standard pseudo file systems such as /dev, /proc, /run, /sys and /tmp, a special /system is created for internal needs.
One reason for this is that we need special files such as /etc/hosts, and /etc/resolv.conf to be writable (remember that the rootfs is read-only).
For example, at boot Talos will write /system/etc/hosts and the bind mount it over /etc/hosts.
This means that instead of making all of /etc writable, Talos only makes very specific files writable under /etc.
All files under /system are completely reproducible.
For files and directories that need to persist across boots, Talos creates overlayfs file systems.
The /etc/kubernetes is a good example of this.
Directories like this are overlayfs backed by an XFS file system mounted at /var.
The /var directory is owned by Kubernetes with the exception of the above overlayfs file systems.
This directory is writable and used by etcd (in the case of control plane nodes), the kubelet, and the CRI (containerd).
9.4 - Components
In this section we will discuss the various components of which Talos is comprised.
When interacting with Talos, the gRPC API endpoint you’re interact with directly is provided by apid. apid acts as the gateway for all component interactions and forwards the requests to routerd.
To run and operate a Kubernetes cluster a certain level of trust is required. Based on the concept of a ‘Root of Trust’, trustd is a simple daemon responsible for establishing trust within the system.
Implementation of eudev into machined. eudev is Gentoo’s fork of udev, systemd’s device file manager for the Linux kernel. It manages device nodes in /dev and handles all user space actions when adding or removing devices. To learn more see the Gentoo Wiki.
apid
When interacting with Talos, the gRPC api endpoint you will interact with directly is apid.
Apid acts as the gateway for all component interactions.
Apid provides a mechanism to route requests to the appropriate destination when running on a control plane node.
We’ll use some examples below to illustrate what apid is doing.
When a user wants to interact with a Talos component via talosctl, there are two flags that control the interaction with apid.
The -e | --endpoints flag is used to denote which Talos node ( via apid ) should handle the connection.
Typically this is a public facing server.
The -n | --nodes flag is used to denote which Talos node(s) should respond to the request.
If --nodes is not specified, the first endpoint will be used.
Note: Typically there will be an endpoint already defined in the Talos config file.
Optionally, nodes can be included here as well.
For example, if a user wants to interact with machined, a command like talosctl -e cluster.talos.dev memory may be used.
$ talosctl -e cluster.talos.dev memory
NODE TOTAL USED FREE SHARED BUFFERS CACHE AVAILABLE
cluster.talos.dev 7938176823901455337246571
In this case, talosctl is interacting with apid running on cluster.talos.dev and forwarding the request to the machined api.
If we wanted to extend our example to retrieve memory from another node in our cluster, we could use the command talosctl -e cluster.talos.dev -n node02 memory.
$ talosctl -e cluster.talos.dev -n node02 memory
NODE TOTAL USED FREE SHARED BUFFERS CACHE AVAILABLE
node02 7938176823901455337246571
The apid instance on cluster.talos.dev receives the request and forwards it to apid running on node02 which forwards the request to the machined api.
We can further extend our example to retrieve memory for all nodes in our cluster by appending additional -n node flags or using a comma separated list of nodes ( -n node01,node02,node03 ):
$ talosctl -e cluster.talos.dev -n node01 -n node02 -n node03 memory
NODE TOTAL USED FREE SHARED BUFFERS CACHE AVAILABLE
node01 793887140711374929457042node02 25784414408190796181384952589227492node03 257844183025518612549777254556
The apid instance on cluster.talos.dev receives the request and forwards is to node01, node02, and node03 which then forwards the request to their local machined api.
containerd
Containerd provides the container runtime to launch workloads on Talos as well as Kubernetes.
Talos services are namespaced under the system namespace in containerd whereas the Kubernetes services are namespaced under the k8s.io namespace.
machined
A common theme throughout the design of Talos is minimalism.
We believe strongly in the UNIX philosophy that each program should do one job well.
The init included in Talos is one example of this, and we are calling it “machined”.
We wanted to create a focused init that had one job - run Kubernetes.
To that extent, machined is relatively static in that it does not allow for arbitrary user defined services.
Only the services necessary to run Kubernetes and manage the node are available.
This includes:
Networkd handles all of the host level network configuration.
Configuration is defined under the networking key.
By default, we attempt to issue a DHCP request for every interface on the server.
This can be overridden by supplying one of the following kernel arguments:
talos.network.interface.ignore - specify a list of interfaces to skip discovery on
ip - ip=<client-ip>:<server-ip>:<gw-ip>:<netmask>:<hostname>:<device>:<autoconf>:<dns0-ip>:<dns1-ip>:<ntp0-ip> as documented in the kernel here
The Linux kernel included with Talos is configured according to the recommendations outlined in the Kernel Self Protection Project (KSSP).
trustd
Security is one of the highest priorities within Talos.
To run a Kubernetes cluster a certain level of trust is required to operate a cluster.
For example, orchestrating the bootstrap of a highly available control plane requires the distribution of sensitive PKI data.
To that end, we created trustd.
Based on the concept of a Root of Trust, trustd is a simple daemon responsible for establishing trust within the system.
Once trust is established, various methods become available to the trustee.
It can, for example, accept a write request from another node to place a file on disk.
Additional methods and capability will be added to the trustd component in support of new functionality in the rest of the Talos environment.
udevd
Udevd handles the kernel device notifications and sets up the necessary links in /dev.
9.5 - Upgrades
Talos
The upgrade process for Talos, like everything else, begins with an API call.
This call tells a node the installer image to use to perform the upgrade.
Each Talos version corresponds to an installer with the same version, such that the
version of the installer is the version of Talos which will be installed.
Because Talos is image based, even at run-time, upgrading Talos is almost
exactly the same set of operations as installing Talos, with the difference that
the system has already been initialized with a configuration.
An upgrade makes use of an A-B image scheme in order to facilitate rollbacks.
This scheme retains the one previous Talos kernel and OS image following each upgrade.
If an upgrade fails to boot, Talos will roll back to the previous version.
Likewise, Talos may be manually rolled back via API (or talosctl rollback).
This will simply update the boot reference and reboot.
An upgrade can preserve data or not.
If Talos is told to NOT preserve data, it will wipe its ephemeral partition, remove itself from the etcd cluster (if it is a control node), and generally make itself as pristine as is possible.
There are likely to be changes to the default option here over time, so if your setup has a preference to one way or the other, it is better to specify it explicitly, but we try to always be “safe” with this setting.
Sequence
When a Talos node receives the upgrade command, the first thing it does is cordon
itself in kubernetes, to avoid receiving any new workload.
It then starts to drain away its existing workload.
NOTE: If any of your workloads is sensitive to being shut down ungracefully, be sure to use the lifecycle.preStop Pod spec.
Once all of the workload Pods are drained, Talos will start shutting down its
internal processes.
If it is a control node, this will include etcd.
If preserve is not enabled, Talos will even leave etcd membership.
(Don’t worry about this; we make sure the etcd cluster is healthy and that it will remain healthy after our node departs, before we allow this to occur.)
Once all the processes are stopped and the services are shut down, all of the
filesystems will be unmounted.
This allows Talos to produce a very clean upgrade, as close as possible to a pristine system.
We verify the disk and then perform the actual image upgrade.
Finally, we tell the bootloader to boot once with the new kernel and OS image.
Then we reboot.
After the node comes back up and Talos verifies itself, it will make permanent
the bootloader change, rejoin the cluster, and finally uncordon itself to receive new workloads.
FAQs
Q. What happens if an upgrade fails?
A. There are many potential ways an upgrade can fail, but we always try to do
the safe thing.
The most common first failure is an invalid installer image reference.
In this case, Talos will fail to download the upgraded image and will abort the upgrade.
Sometimes, Talos is unable to successfully kill off all of the disk access points, in which case it cannot safely unmount all filesystems to effect the upgrade.
In this case, it will abort the upgrade and reboot.
It is possible (especially with test builds) that the upgraded Talos system will fail to start.
In this case, the node will be rebooted, and the bootloader will automatically use the previous Talos kernel and image, thus effectively aborting the upgrade.
Lastly, it is possible that Talos itself will upgrade successfully, start up, and rejoin the cluster but your workload will fail to run on it, for whatever reason.
This is when you would use the talosctl rollback command to revert back to the previous Talos version.
Q. Can upgrades be scheduled?
A. We provide the Talos Controller Manager to coordinate upgrades of a cluster.
Additionally, because the upgrade sequence is API-driven, you can easily tie this in to your own business logic to schedule and coordinate your upgrades.
Q. Can the upgrade process be observed?
A. The Talos Controller Manager does this internally, watching the logs of
the node being upgraded, using the streaming log API of Talos.
You can do the same thing using the talosctl logs --follow machined command.
Q. Are worker node upgrades handled differently from control plane node upgrades?
A. Short answer: no.
Long answer: Both node types follow the same set procedure.
However, since control plane nodes run additional services, such as etcd, there are some extra steps and checks performed on them.
From the user’s standpoint, however, the processes are identical.
There are also additional restrictions on upgrading control plane nodes.
For instance, Talos will refuse to upgrade a control plane node if that upgrade will cause a loss of quorum for etcd.
This can generally be worked around by setting preserve to true.
Q. Will an upgrade try to do the whole cluster at once?
Can I break my cluster by upgrading everything?
A. No.
Nothing prevents the user from sending any number of near-simultaneous upgrades to each node of the cluster.
While most people would not attempt to do this, it may be the desired behaviour in certain situations.
If, however, multiple control plane nodes are asked to upgrade at the same time, Talos will protect itself by making sure only one control plane node upgrades at any time, through its checking of etcd quorum.
A lease is taken out by the winning control plane node, and no other control plane node is allowed to execute the upgrade until the lease is released and the etcd cluster is healthy and will be healthy when the next node performs its upgrade.
Q. Is there an operator or controller which will keep my nodes updated
automatically?
A. Yes.
We provide the Talos Controller Manager to perform this maintenance in a simple, controllable fashion.
How is Talos different from other container optimized Linux distros?
Talos shares a lot of attributes with other distros, but there are some important differences.
Talos integrates tightly with Kubernetes, and is not meant to be a general-purpose operating system.
The most important difference is that Talos is fully controlled by an API via a gRPC interface, instead of an ordinary shell.
We don’t ship SSH, and there is no console access.
Removing components such as these has allowed us to dramatically reduce the footprint of Talos, and in turn, improve a number of other areas like security, predictability, reliability, and consistency across platforms.
It’s a big change from how operating systems have been managed in the past, but we believe that API-driven OSes are the future.
Why no shell or SSH?
Since Talos is fully API-driven, all maintenance and debugging operations should be possible via the OS API.
We would like for Talos users to start thinking about what a “machine” is in the context of a Kubernetes cluster.
That is, that a Kubernetes cluster can be thought of as one massive machine, and the nodes are merely additional, undifferentiated resources.
We don’t want humans to focus on the nodes, but rather on the machine that is the Kubernetes cluster.
Should an issue arise at the node level, talosctl should provide the necessary tooling to assist in the identification, debugging, and remedation of the issue.
However, the API is based on the Principle of Least Privilege, and exposes only a limited set of methods.
We envision Talos being a great place for the application of control theory in order to provide a self-healing platform.
Why the name “Talos”?
Talos was an automaton created by the Greek God of the forge to protect the island of Crete.
He would patrol the coast and enforce laws throughout the land.
We felt it was a fitting name for a security focused operating system designed to run Kubernetes.
9.7 - talosctl
The talosctl tool packs a lot of power into a small package.
It acts as a reference implementation for the Talos API, but it also handles a lot of
conveniences for the use of Talos and its clusters.
Video Walkthrough
To see some live examples of talosctl usage, view the following video:
Client Configuration
Talosctl configuration is located in $XDG_CONFIG_HOME/talos/config.yaml if $XDG_CONFIG_HOME is defined.
Otherwise it is in $HOME/.talos/config.
The location can always be overridden by the TALOSCONFIG environment variable or the --talosconfig parameter.
Like kubectl, talosctl uses the concept of configuration contexts, so any number of Talos clusters can be managed with a single configuration file.
Unlike kubectl, it also comes with some intelligent tooling to manage the merging of new contexts into the config.
The default operation is a non-destructive merge, where if a context of the same name already exists in the file, the context to be added is renamed by appending an index number.
You can easily overwrite instead, as well.
See the talosctl config help for more information.
Endpoints and Nodes
The endpoints are the communication endpoints to which the client directly talks.
These can be load balancers, DNS hostnames, a list of IPs, etc.
Further, if multiple endpoints are specified, the client will automatically load
balance and fail over between them.
In general, it is recommended that these point to the set of control plane nodes, either directly or through a reverse proxy or load balancer.
Each endpoint will automatically proxy requests destined to another node through it, so it is not necessary to change the endpoint configuration just because you wish to talk to a different node within the cluster.
Endpoints do, however, need to be members of the same Talos cluster as the target node, because these proxied connections reply on certificate-based authentication.
The node is the target node on which you wish to perform the API call.
While you can configure the target node (or even set of target nodes) inside the ’talosctl’ configuration file, it is often useful to simply and explicitly declare the target node(s) using the -n or --nodes command-line parameter.
Keep in mind, when specifying nodes that their IPs and/or hostnames are as seen by the endpoint servers, not as from the client.
This is because all connections are proxied first through the endpoints.
Kubeconfig
The configuration for accessing a Talos Kubernetes cluster is obtained with talosctl.
By default, talosctl will safely merge the cluster into the default kubeconfig.
Like talosctl itself, in the event of a naming conflict, the new context name will be index-appended before insertion.
The --force option can be used to overwrite instead.
You can also specify an alternate path by supplying it as a positional parameter.
Thus, like Talos clusters themselves, talosctl makes it easy to manage any
number of kubernetes clusters from the same workstation.
Commands
Please see the CLI reference for the entire list of commands which are available from talosctl.