Developing Talos
This guide outlines steps and tricks to develop Talos operating systems and related components. The guide assumes Linux operating system on the development host. Some steps might work under Mac OS X, but using Linux is highly advised.
Prepare
Check out the Talos repository.
Try running make help
to see available make
commands.
You would need Docker and buildx
installed on the host.
Note: Usually it is better to install up to date Docker from Docker apt repositories, e.g. Ubuntu instructions.
If
buildx
plugin is not available with OS docker packages, it can be installed as a plugin from GitHub releases.
Set up a builder with access to the host network:
docker buildx create --driver docker-container --driver-opt network=host --name local1 --buildkitd-flags '--allow-insecure-entitlement security.insecure' --use
Note:
network=host
allows buildx builder to access host network, so that it can push to a local container registry (see below).
Make sure the following steps work:
make talosctl
make initramfs kernel
Set up a local docker registry:
docker run -d -p 5005:5000 \
--restart always \
--name local registry:2
Try to build and push to local registry an installer image:
make installer IMAGE_REGISTRY=127.0.0.1:5005 PUSH=true
Record the image name output in the step above.
Note: it is also possible to force a stable image tag by using
TAG
variable:make installer IMAGE_REGISTRY=127.0.0.1:5005 TAG=v1.0.0-beta.1 PUSH=true
.
Running Talos cluster
Set up local caching docker registries (this speeds up Talos cluster boot a lot), script is in the Talos repo:
bash hack/start-registry-proxies.sh
Start your local cluster with:
sudo -E _out/talosctl-linux-amd64 cluster create \
--provisioner=qemu \
--cidr=172.20.0.0/24 \
--registry-mirror docker.io=http://172.20.0.1:5000 \
--registry-mirror k8s.gcr.io=http://172.20.0.1:5001 \
--registry-mirror quay.io=http://172.20.0.1:5002 \
--registry-mirror gcr.io=http://172.20.0.1:5003 \
--registry-mirror ghcr.io=http://172.20.0.1:5004 \
--registry-mirror 127.0.0.1:5005=http://172.20.0.1:5005 \
--install-image=127.0.0.1:5005/talos-systems/installer:<RECORDED HASH from the build step> \
--masters 3 \
--workers 2 \
--with-bootloader=false
--provisioner
selects QEMU vs. default Docker- custom
--cidr
to make QEMU cluster use different network than default Docker setup (optional) --registry-mirror
uses the caching proxies set up above to speed up boot time a lot, last one adds your local registry (installer image was pushed to it)--install-image
is the image you built withmake installer
above--masters
&--workers
configure cluster size, choose to match your resources; 3 masters give you HA control plane; 1 master is enough, never do 2 masters--with-bootloader=false
disables boot from disk (Talos will always boot from_out/vmlinuz-amd64
and_out/initramfs-amd64.xz
). This speeds up development cycle a lot - no need to rebuild installer and perform install, rebooting is enough to get new code.
Note: as boot loader is not used, it’s not necessary to rebuild
installer
each time (old image is fine), but sometimes it’s needed (when configuration changes are done and old installer doesn’t validate the config).
talosctl cluster create
derives Talos machine configuration version from the install image tag, so sometimes early in the development cycle (when new minor tag is not released yet), machine config version can be overridden with--talos-version=v0.14
.
If the --with-bootloader=false
flag is not enabled, for Talos cluster to pick up new changes to the code (in initramfs
), it will require a Talos upgrade (so new installer
should be built).
With --with-bootloader=false
flag, Talos always boots from initramfs
in _out/
directory, so simple reboot is enough to pick up new code changes.
If the installation flow needs to be tested, --with-bootloader=false
shouldn’t be used.
Console Logs
Watching console logs is easy with tail
:
tail -F ~/.talos/clusters/talos-default/talos-default-*.log
Interacting with Talos
Once talosctl cluster create
finishes successfully, talosconfig
and kubeconfig
will be set up automatically to point to your cluster.
Start playing with talosctl
:
talosctl -n 172.20.0.2 version
talosctl -n 172.20.0.3,172.20.0.4 dashboard
talosctl -n 172.20.0.4 get members
Same with kubectl
:
kubectl get nodes -o wide
You can deploy some Kubernetes workloads to the cluster.
You can edit machine config on the fly with talosctl edit mc --immediate
, config patches can be applied via --config-patch
flags, also many features have specific flags in talosctl cluster create
.
Quick Reboot
To reboot whole cluster quickly (e.g. to pick up a change made in the code):
for socket in ~/.talos/clusters/talos-default/talos-default-*.monitor; do echo "q" | sudo socat - unix-connect:$socket; done
Sending q
to a single socket allows to reboot a single node.
Note: This command performs immediate reboot (as if the machine was powered down and immediately powered back up), for normal Talos reboot use
talosctl reboot
.
Development Cycle
Fast development cycle:
- bring up a cluster
- make code changes
- rebuild
initramfs
withmake initramfs
- reboot a node to pick new
initramfs
- verify code changes
- more code changes…
Some aspects of Talos development require to enable bootloader (when working on installer
itself), in that case quick development cycle is no longer possible, and cluster should be destroyed and recreated each time.
Running Integration Tests
If integration tests were changed (or when running them for the first time), first rebuild the integration test binary:
rm -f _out/integration-test-linux-amd64; make _out/integration-test-linux-amd64
Running short tests against QEMU provisioned cluster:
_out/integration-test-linux-amd64 \
-talos.provisioner=qemu \
-test.v \
-talos.crashdump=false \
-test.short \
-talos.talosctlpath=$PWD/_out/talosctl-linux-amd64
Whole test suite can be run removing -test.short
flag.
Specfic tests can be run with -test.run=TestIntegration/api.ResetSuite
.
Build Flavors
make <something> WITH_RACE=1
enables Go race detector, Talos runs slower and uses more memory, but memory races are detected.
make <something> WITH_DEBUG=1
enables Go profiling and other debug features, useful for local development.
Destroying Cluster
sudo -E ../talos/_out/talosctl-linux-amd64 cluster destroy --provisioner=qemu
This command stops QEMU and helper processes, tears down bridged network on the host, and cleans up
cluster state in ~/.talos/clusters
.
Note: if the host machine is rebooted, QEMU instances and helpers processes won’t be started back. In that case it’s required to clean up files in
~/.talos/clusters/<cluster-name>
directory manually.
Optional
Set up cross-build environment with:
docker run --rm --privileged multiarch/qemu-user-static --reset -p yes
Note: the static qemu binaries which come with Ubuntu 21.10 seem to be broken.
Unit tests
Unit tests can be run in buildx with make unit-tests
, on Ubuntu systems some tests using loop
devices will fail because Ubuntu uses low-index loop
devices for snaps.
Most of the unit-tests can be run standalone as well, with regular go test
, or using IDE integration:
go test -v ./internal/pkg/circular/
This provides much faster feedback loop, but some tests require either elevated privileges (running as root
) or additional binaries available only in Talos rootfs
(containerd tests).
Running tests as root can be done with -exec
flag to go test
, but this is risky, as test code has root access and can potentially make undesired changes:
go test -exec sudo -v ./internal/app/machined/pkg/controllers/network/...
Go Profiling
Build initramfs
with debug enabled: make initramfs WITH_DEBUG=1
.
Launch Talos cluster with bootloader disabled, and use go tool pprof
to capture the profile and show the output in your browser:
go tool pprof http://172.20.0.2:9982/debug/pprof/heap
The IP address 172.20.0.2
is the address of the Talos node, and port :9982
depends on the Go application to profile:
- 9981:
apid
- 9982:
machined
- 9983:
trustd